Skip to main content
Log in

The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biodegradable and bioactive β-tricalcium phosphate (β-TCP) coatings were prepared on magnesium (Mg) in order to improve its biocompatibility by a chemical method. The tensile bonding strength of β-TCP coating and Mg substrate was measured by the standard adhesion test (ISO 13779-4). And the cytocompatibility of β-TCP coated Mg was studied by using human osteoblast-like MG63 cells. It was found that the MG63 cells could grow well on the surface of β-TCP coated Mg and the cell viability on β-TCP coated Mg was above 80% during the cocultivation of MG63 cells and β-TCP coated Mg for 10 days, indicating no cytotoxicity. It was concluded that the β-TCP coated Mg had good cytocompatibility. The degradation of Mg substrate with β-TCP coating in vitro was studied in detail by XRD, EDX, SEM, and ICP. The results showed that a bone-like apatite continually formed on the surface of the sample with the degradation of both Mg substrate and β-TCP coating in Hank’s solution (a simulated body fluid). The biodegradation mechanism was preliminarily analyzed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.C. Li, J.C. Gao, Y. Wang, Surf. Coat. Technol. 185, 92 (2004). doi:10.1016/j.surfcoat.2004.01.004

    Article  CAS  Google Scholar 

  2. C. Di Mario, H. Griffiths, O. Goktekin, N. Peeters, J. Verbist et al., J. Interv. Cardiol. 17, 391 (2004). doi:10.1111/j.1540-8183.2004.04081.x

    Article  PubMed  Google Scholar 

  3. S.R. Kim, J.H. Lee, Y.T. Kim, D.H. Riu, S.J. Jung et al., Biomaterials 24, 1389 (2003). doi:10.1016/S0142-9612(02)00523-9

    Article  PubMed  Google Scholar 

  4. E.D. McBride, J. Am. Med. Assoc. 111(27), 2464 (1938)

    CAS  Google Scholar 

  5. Y. Al-Abdullat, S. Tsutsumi, N. Nakajima, M. Ohta, H. Kuwahara, K. Ikeuchi, Mater. Trans. 42, 1777 (2001). doi:10.2320/matertrans.42.1777

    Article  CAS  Google Scholar 

  6. A. Yamamoto, H. Tsubakino, Mater. Trans. 44, 511 (2003). doi:10.2320/matertrans.44.511

    Article  CAS  Google Scholar 

  7. E. Zhang, L.P. Xu, K. Yang, Scr. Mater. 53, 523 (2005). doi:10.1016/j.scriptamat.2005.05.009

    Article  CAS  Google Scholar 

  8. K.Y. Chiu, M.H. Wong, F.T. Cheng, H.C. Man, Surf. Coat. Technol. 202, 590 (2007). doi:10.1016/j.surfcoat.2007.06.035

    Article  CAS  Google Scholar 

  9. P. Shi, W.F. Ng, M.H. Wong, F.T. Cheng, J. Alloy Compd. (2008). doi:10.1016/j.jallcom.2008.01.102

  10. Y. Li, I.-S. Lee, F.-Z. Cui, S.-H. Choi, Biomaterials 29, 2025 (2008). doi:10.1016/j.biomaterials.2008.01.009

    Article  PubMed  CAS  Google Scholar 

  11. Y.W. Song, D.Y. Shan, E.H. Han, Mater. Lett. (2008). doi:10.1016/j.matlet.2008.02.048

  12. R. Famery, N. Richard, P. Boch, Ceram. Int. 20, 327 (1994). doi:10.1016/0272-8842(94)90050-7

    Article  CAS  Google Scholar 

  13. G. Ciapetti, E. Cenni, L. Pratelli, A. Pizzoferrato, Biomaterials 14, 359 (1993). doi:10.1016/0142-9612(93)90055-7

    Article  PubMed  CAS  Google Scholar 

  14. C. Fleury, A. Petit, F. Mwale, J. Antoniou, D.J. Zukor, M. Tabrizian, Biomaterials 27, 3351 (2006). doi:10.1016/j.biomaterials.2006.01.035

    Article  PubMed  CAS  Google Scholar 

  15. A.P. Marques, R.L. Reis, J.A. Hunt, Biomaterials 23, 1471 (2002). doi:10.1016/S0142-9612(01)00272-1

    Article  PubMed  CAS  Google Scholar 

  16. G. Song, Corros. Sci. 49, 1696 (2007). doi:10.1016/j.corsci.2007.01.001

    Article  CAS  Google Scholar 

  17. C. Liu, Y. Xin, X. Tian, P.K. Chu, Thin Solid Films 516, 422 (2007). doi:10.1016/j.tsf.2007.05.048

    Article  ADS  CAS  Google Scholar 

  18. S. Jalota, Sarit.B. Bhaduri, A. Cuneyt Tas, Mater. Sci. Eng. C 27, 432 (2007). doi:10.1016/j.msec.2006.05.052

    Article  CAS  Google Scholar 

  19. X. Zheng, M. Huang, C. Ding, Biomaterials 21, 841 (2000). doi:10.1016/S0142-9612(99)00255-0

    Article  PubMed  CAS  Google Scholar 

  20. M. Inagaki, Y. Yokogawa, T. Kameyama, J. Eur. Ceram. Soc. 26, 495 (2006)

    Article  CAS  Google Scholar 

  21. Yung.-Chin. Yang, Surf. Coat. Technol. 201, 7187 (2007). doi:10.1016/j.surfcoat.2007.01.027

    Article  CAS  Google Scholar 

  22. H. Li, K.A. Khor, Surf. Coat. Technol. 201, 2147 (2006). doi:10.1016/j.surfcoat.2006.03.024

    Article  CAS  Google Scholar 

  23. E.-J. Lee, S.-H. Lee, H.-W. Kim, Y.-M. Kong, H.-E. Kim, Biomaterials 26, 3843 (2005). doi:10.1016/j.biomaterials.2004.10.019

    Article  PubMed  CAS  Google Scholar 

  24. T. Fujihara, M. Tsukamoto, N. Abe et al., Vacuum 73, 629 (2004). doi:10.1016/j.vacuum.2003.12.082

    Article  CAS  Google Scholar 

  25. X.F. Xiao, R.F. Liu, Y.Z. Zheng, Surf. Coat. Technol. 200, 4406 (2006). doi:10.1016/j.surfcoat.2005.02.205

    Article  CAS  Google Scholar 

  26. J. Sun, Y. Han, X. Huang, Surf. Coat. Technol. 201, 5655 (2007). doi:10.1016/j.surfcoat.2006.07.052

    Article  CAS  Google Scholar 

  27. M. Chen, D. Liu, C. You, X. Yang, Z. Cui, Surf. Coat. Technol. 201, 5688 (2007). doi:10.1016/j.surfcoat.2006.07.057

    Article  CAS  Google Scholar 

  28. H.-W. Kim, Y.-M. Kong, C.-J. Bae, Y.-J. Noh, H.-E. Kim, Biomaterials 25, 2919 (2004). doi:10.1016/j.biomaterials.2003.09.074

    Article  PubMed  CAS  Google Scholar 

  29. D. Wang, C. Chen, J. Ma, T. Lei, Appl. Surf. Sci. 253, 4016 (2007). doi:10.1016/j.apsusc.2006.08.036

    Article  ADS  CAS  Google Scholar 

  30. F.-H. Lin, Y.-S. Hsu, S.-H. Lin, J.-S. Sun, Biomaterials 23, 4029 (2002). doi:10.1016/S0142-9612(02)00154-0

    Article  PubMed  CAS  Google Scholar 

  31. A. Beck, Magnesium und seine Legierungen (Springer, Berlin, 1939)

    Google Scholar 

  32. E.F. Emley, Principles of Magnesium Technology (Pergamon Press, Oxford, 1966)

    Google Scholar 

  33. L.L. Hench, J. Am. Ceram. Soc. 81, 1705 (1998)

    CAS  Google Scholar 

  34. M.T. Pham, M.F. Maitz, W. Matz, H. Reuther, E. Richter, G. Steiner, Thin Solid Films 379, 50 (2000). doi:10.1016/S0040-6090(00)01553-4

    Article  ADS  CAS  Google Scholar 

  35. X. Lu, Y. Leng, Biomaterials 26, 1097 (2005). doi:10.1016/j.biomaterials.2004.05.034

    Article  PubMed  CAS  Google Scholar 

  36. T.S. Sampath Kumar, I. Manjubala, J. Gunasekaran, Biomaterials 21, 1623 (2000). doi:10.1016/S0142-9612(00)00014-4

    Article  Google Scholar 

  37. R.Z. LeGeros, in Hydroxyapatite and Related Materials, ed. by P.W. Brown, B. Constantz (CRC Press, Boca Raton, 1994), p. 3

  38. F. Li, Q.L. Feng, F.Z. Cui, H.D. Li, H. Schubert, Surf. Coat. Technol. 154, 88 (2002). doi:10.1016/S0257-8972(01)01710-8

    Article  CAS  Google Scholar 

  39. M. Eldeeb, M. Roszkowski, J. Oral Maxillofac. Surg. 46, 33 (1988). doi:10.1016/0278-2391(88)90333-3

    Article  CAS  Google Scholar 

  40. I. Manjubala, M. Sivakumar, Mater. Chem. Phys. 71, 272 (2001). doi:10.1016/S0254-0584(01)00293-0

    Article  CAS  Google Scholar 

  41. J. Pena, M. Vallet-Regi, J. Eur. Ceram. Soc. 23, 1687 (2003). doi:10.1016/S0955-2219(02)00369-2

    Article  CAS  Google Scholar 

  42. K.S. TenHuisen, P.W. Brown, J. Biomed. Mater. Res. 36, 306 (1997). doi:10.1002/(SICI)1097-4636(19970905)36:3<306::AID-JBM5>3.0.CO;2-I

    Article  PubMed  CAS  Google Scholar 

  43. F. Witte, J. Reifenrath, P.P. Müller, H.-A. Crostack, J. Nellesen, F.W. Bach, D. Bormann, M. Rudert, Mat.-wiss. u. Werkstofftech 37, 504 (2006). doi:10.1002/mawe.200600027

    Article  CAS  Google Scholar 

  44. P.N. De Aza, F. Guitian, A. Merlos, E. Lora-Tamayo, S. De Aza, J. Mater. Sci.: Mater. Med. 7, 399 (1996). doi:10.1007/BF00122007

    Article  Google Scholar 

  45. T.S.B. Narasaraju, D.E. Phebe, J. Mater. Sci. 32, 1 (1996). doi:10.1007/BF00355120

    Article  Google Scholar 

  46. W.B. Busa, R. Nuccitelli, Am. J. Physiol. 246, R409 (1984)

    PubMed  CAS  Google Scholar 

  47. L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, J. Biomed. Mater. Res. Symp. 2, 117 (1971). doi:10.1002/jbm.820050611

    Article  Google Scholar 

  48. T. Kokubo, H. Kushitani, S. Sakka, T. Kitugi, T. Yamanuro, J. Biomed. Mater. Res. 24, 721 (1990). doi:10.1002/jbm.820240607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by a fund from Chinese Academy of Sciences, Applied Research of Bioactive Bone Implanted Materials (No. KGCX2-YW-207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, F., Tan, L.L., Jin, X.X. et al. The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium. J Mater Sci: Mater Med 20, 1149–1157 (2009). https://doi.org/10.1007/s10856-008-3669-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3669-x

Keywords

Navigation