Skip to main content

Advertisement

Log in

Enhancing Biocompatibility and Corrosion Resistance of Ti-6Al-4V Alloy by Surface Modification Route

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Titanium (Ti) and its alloys are widely used as candidate materials for biomedical implants. Despite their good biocompatibility and corrosion resistance, these materials suffer from corrosion after implantation in biological environments. The aim of this research work is to study the effect of two coatings on biocompatibility and corrosion behavior of Ti-6Al-4V biomedical implant material. Hydroxyapatite (HA) and hydroxyapatite/titanium dioxide (HA/TiO2) coatings were thermal-sprayed on Ti-6Al-4V substrates. In the latter case, TiO2 was used as a bond coat between the substrate and HA top coat. The corrosion behavior of coated and un-coated samples in Ringer’s solution was studied by potentiodynamic and linear polarization techniques. Before and after corrosion testing, XRD and SEM/EDS techniques were used for the analysis of phases formed and to investigate microstructure/compositional changes in the coated specimens. The cellular response was analyzed by the MTT (microculture tetrazolium) assay. The results showed that both the HA, as well as, the HA/TiO2 coatings significantly increased the corrosion resistance of the substrate material. The HA coating was found to be more biocompatible as compared to the un-coated and HA/TiO2-coated Ti-6Al-4V alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K.K. Chew, S.H.S. Zein, and A.L. Ahmad, The Corrosion Scenario in Human Body: Stainless Steel 316L Orthopaedic Implants, Nat. Sci., 2012, 4(3), p 184-188

    CAS  Google Scholar 

  2. S.B. Goodman, Z. Yao, M. Keeney, and F. Yang, The Future of Biologic Coatings for Orthopaedic Implants, Biomaterials, 2013, 34(13), p 3174-3183

    Article  CAS  Google Scholar 

  3. G. Manivasagam, D. Dhinasekaran, and A. Rajamanickam, Biomedical Implants: Corrosion and its Prevention—A Review, Recent Patents Corros. Sci., 2010, 2, p 40-54

    Article  CAS  Google Scholar 

  4. U.K. Mudali, T.M. Sridhar, and B. Raj, Corrosion of Bio Implants, Sadhana, 2003, 28(3–4), p 601-637

    Google Scholar 

  5. I. Gurappa, Characterization of Different Materials for Corrosion Resistance under Simulated Body Fluid Conditions, Mater. Charact., 2002, 49(1), p 73-79

    Article  CAS  Google Scholar 

  6. N. Hallab, K. Merritt, and J.J. Jacobs, Metal Sensitivity in Patients with Orthopaedic Implants, J. Bone. Joint. Surg. Am., 2001, 83-A(3), p 428-436

    Article  CAS  Google Scholar 

  7. J.L. Gilbert, C.A. Buckley, and J.J. Jacobs, In-Vivo Corrosion of Modular Hip Prosthesis Components in Mixed and Similar Metal Combinations: The Effect of Crevice, Stress, Motion, and Alloy Coupling, J. Biomed. Mater. Res., 1993, 27(12), p 1533-1544

    Article  CAS  Google Scholar 

  8. E.B. Mathiesen, J.U. Lindgren, G.G.A. Blomgren, and F.P. Reinholt, Corrosion of Modular Hip Prostheses, J. Bone. Joint. Surg. Br., 1991, 73-B(4), p 569-575

    Article  Google Scholar 

  9. T.M. Grupp, T. Weik, W. Bloemer, and H.P. Knaebel, Modular Titanium Alloy Neck Adapter Failures in Hip Replacement-Failure Mode Analysis and Influence of Implant Material, BMC Musculoskelet. Disord., 2010, 11(3), p 1-12

    Google Scholar 

  10. J.R. Goldberg, J.L. Gilbert, J.J. Jacobs, T.W. Bauer, W. Paprosky, and S. Leurgans, A Multicenter Retrieval Study of the Taper Interfaces of Modular Hip Prostheses, Clin. Orthop. Relat. Res., 2002, 401, p 149-161

    Article  Google Scholar 

  11. P.J. Hol, A. Molster, and N.R. Gjerdet, Should the Galvanic Combination of Titanium and Stainless Steel Surgical Implants be Avoided?, Injury, 2008, 39(2), p 161-169

    Article  Google Scholar 

  12. Q. Chen and G.A. Thouas, Metallic Implant Biomaterials, Mater. Sci. Eng. R, 2015, 87, p 1-57

    Article  Google Scholar 

  13. R.C. Rocha, A.G.S. Galdino, S.N. Silva, and M.L.P. Machado, Surface, Microstructural, and Adhesion Strength Investigations of a Bioactive Hydroxyapatite-Titanium Oxide Ceramic Coating Applied to Ti-6Al-4V Alloys by Plasma Thermal Spraying, Mater. Res., 2018, 21(4), p e20171144

    Article  Google Scholar 

  14. R.B. Heimann, The Challenge and Promise of Low-Temperature Bioceramic Coatings: An Editorial, Surf. Coat. Technol., 2016, 301, p 1-5

    Article  CAS  Google Scholar 

  15. J.L. Ong, M. Appleford, S. Oh, Y. Yang, W.H. Chen, J.D. Bumhardner, and W.O. Haggard, Characterization and Development of Bioactive Hydroxyapatite Coatings, J. Miner. Met. Mater. Soc., 2006, 58(7), p 67-69

    Article  CAS  Google Scholar 

  16. S. Sobieszczyk, Surface Modifications of Ti and its Alloys, Advanced Materials Science, 2010, 10(1), p 29-42

    CAS  Google Scholar 

  17. A. Killinger, P. Muller, and R. Gadow, What Do We Know, What are the Current Limitations of Suspension HVOF Spraying, J. Therm. Spray Technol., 2015, 24(7), p 1130-1142

    Article  Google Scholar 

  18. P. Fauchais, M. Vardell, A. Vardelle, and S. Goutier, What Do We Know, What are the Current Limitations of Suspension Plasma Spraying?, J. Therm. Spray Technol., 2015, 24(7), p 1120-1129

    Article  Google Scholar 

  19. T.P. Singh, H. Singh, and H. Singh, Characterization and In Vitro Investigations of Thermal Sprayed HA and HA/TiO2 Coatings on 316L SS, J. Thermal Spray Technol., 2012, 21(5), p 917-927

    Article  CAS  Google Scholar 

  20. X. Zhao, X. Liu, C. Ding, and P.K. Chu, In Vitro Bioactivity of Plasma-Sprayed TiO2 Coating after Sodium Hydroxide Treatment, Surf. Coat. Technol., 2006, 200, p 5487-5492

    Article  CAS  Google Scholar 

  21. T.P. Singh, H. Singh, and H. Singh, Characterization and In Vitro Corrosion Investigations of Thermal Sprayed Hydroxyapatite and Hydroxyapatite-Titania Coatings on Ti-Alloy, Metall. Mater. Trans. A, 2012, 43(11), p 4365-4376

    Article  Google Scholar 

  22. T.M. Sridhar, U.K. Mudali, and M. Subbaiyan, Sintering Atmosphere and Temperature Effects on Hydroxyapatite Coated Type 316L Stainless Steel, Corros. Sci., 2003, 45(10), p 2337-2359

    Article  CAS  Google Scholar 

  23. Y. Yang, K. Kim, C.M. Agrawal, and J.L. Ong, Interaction of Hydroxyapatite-Titanium at Elevated Temperature in Vacuum Environment, Biomaterials, 2004, 25(15), p 2927-2932

    Article  CAS  Google Scholar 

  24. S. Lazic, S. Zec, N. Miljevic, and S. Milonjic, The Effect of Temperature on the Properties of Hydroxyapatite Precipitated from Calcium Hydroxide and Phosphoric Acid, Thermochim. Acta, 2001, 374(1), p 13-22

    Article  CAS  Google Scholar 

  25. P. Cheang and K.A. Khor, Addressing Processing Problems Associated with Plasma Spraying of Hydroxyapatite Coatings, Biomaterials, 1996, 17(5), p 537-544

    Article  CAS  Google Scholar 

  26. A.R. Boyd, B.J. Meenan, and N.S. Leyland, Surface Characterisation of the Evolving Nature of Radio Frequency (RF) Magnetron Sputter Deposited Calcium Phosphate Thin Films after Exposure to Physiological Solution, Surf. Coat. Technol., 2006, 200, p 6002-6013

    Article  CAS  Google Scholar 

  27. T.F. Stoica, C. Morosanu, A. Slav, T. Stoica, P. Osiceanu, C. Anastasescu, M. Gartner, and M. Zaharescu, Hydroxyapatite Films Obtained by Sol-gel and Sputtering, Thin Solid Films, 2008, 516, p 8112-8116

    Article  CAS  Google Scholar 

  28. L.Q. Tri and D.H.C. Chua, An Investigation into the Effects of High Laser Fluence on Hydroxyapatite/Calcium Phosphate Films Deposited by Pulsed Laser Deposition, Appl. Surf. Sci., 2009, 256(1), p 76-80

    Article  CAS  Google Scholar 

  29. R. d’Haese, L. Pawlowski, M. Bigan, R. Jaworski, and M. Martel, Phase Evolution of Hydroxapatite Coatings Suspension Plasma Sprayed Using Variable Parameters in Simulated Body Fluid, Surf. Coat. Technol., 2010, 204, p 1236-1246

    Article  Google Scholar 

  30. R. Snyders, E. Bousser, D. Music, J. Jensen, S. Hocquet, and J.M. Schneider, Influence of the Chemical Composition on the Phase Constitution and the Elastic Properties of RF-Sputtered Hydroxyapatite Coatings, Plasma Process. Polym., 2008, 5(2), p 168-174

    Article  CAS  Google Scholar 

  31. S. Kozerski, L. Pawlowski, R. Jaworski, F. Roudet, and F. Petit, Two Zones Microstructure of Suspension Plasma Sprayed Hydroxyapatite Coatings Surf, Coat. Technol., 2010, 204, p 1380-1387

    Article  CAS  Google Scholar 

  32. J. Legoux, F. Chellat, R. Lima, B. Marple, M. Bureau, H. Shen, and G. Candeliere, Development of Osteoblast Colonies on New Bioactive Coatings, J. Thermal Spray Technol., 2006, 15(4), p 628-633

    Article  CAS  Google Scholar 

  33. K.A. Gross and D.M. Müller, Topography Control of Hydroxyapatite Coatings, Key Eng. Mater., 2006, 309–311, p 693-696

    Article  Google Scholar 

  34. R.S. Lima, A. Kucuk, and C.C. Berndt, Evaluation of Microhardness and Elastic Modulus of Thermally Sprayed Nanostructured Zirconia Coatings, Surf. Coat. Technol., 2001, 135(2–3), p 166-172

    Article  CAS  Google Scholar 

  35. T.P. Singh, H. Singh, and H. Singh, Characterization of Thermal Sprayed Hydroxyapatite Coatings on Some Biomedical Implant Materials, J. Appl. Biomater. Funct. Mater., 2014, 12(1), p 48-56

    CAS  Google Scholar 

  36. S.K. Yen, S.H. Chiou, S.J. Wu, C.C. Chang, S.P. Lin, and C.M. Lin, Characterization of Electrolytic HA/ZrO2 Double Layers Coatings on Ti-6Al-4V Implant Alloy, Mater. Sci. Eng., 2006, 26(1), p 65-77

    Article  CAS  Google Scholar 

  37. M.H. Fathi, M. Salehi, A. Saatchi, V. Mortazavi, and S.B. Moosavi, In Vitro Corrosion Behavior of Bioceramic, Metallic and Bioceramic-Metallic, Coated Stainless Steel Dental Implants, Dent. Mater., 2003, 19(3), p 188-198

    Article  CAS  Google Scholar 

  38. S.C.P. Cachinho and R.N. Correia, Titanium Scaffolds for Osteointegration: Mechanical, In Vitro and Corrosion Behavior, J. Mater. Sci. Mater. Med., 2008, 19(1), p 451-457

    Article  CAS  Google Scholar 

  39. R. Kumari and J.D. Majumdar, Studies on Corrosion Resistance and Bio-Activity of Plasma Spray Deposited Hydroxylapatite (HA) based TiO2 and ZrO2 Dispersed Composite Coatings on Titanium Alloy (Ti-6Al-4V) and the Same after Post Spray Heat Treatment, Appl. Surf. Sci., 2017, 420, p 935-943

    Article  CAS  Google Scholar 

  40. C.T. Kwok, P.K. Wong, F.T. Cheng, and H.C. Man, Characterization and Corrosion behavior of Hydroxyapatite Coatings on Ti6Al4V Fabricated by Electrophoretic Deposition, Appl. Surf. Sci., 2009, 255(13–14), p 6736-6744

    Article  CAS  Google Scholar 

  41. M.H. Fathi and F. Azam, Novel Hydroxyapatite/Tantalum Surface Coating for Metallic Dental Implant, Mater. Lett., 2007, 61(4–5), p 1238-1241

    Article  CAS  Google Scholar 

  42. I.C. Lavos-Valereto, I. Costa, and S. Wolynec, The Electrochemical Behavior of Ti-6Al-7Nb Alloy with and without Plasma-Sprayed Hydroxyapatite Coating in Hank’s Solution, J. Biomed. Mater. Res., 2002, 63(5), p 664-670

    Article  CAS  Google Scholar 

  43. H. Kim, R.P. Camata, Y.K. Vohra, and W.R. Lacefield, Control of Phase Composition in Hydroxyapatite/Tetracalcium Phosphate Biphasic Thin Coatings for Biomedical Applications, J. Mater. Sci. Mater. Med., 2005, 16(10), p 961-966

    Article  CAS  Google Scholar 

  44. Y.P. Lu, Y.Z. Song, R.F. Zhu, M.S. Li, and T.Q. Lei, Factors Influencing Phase Compositions and Structure of Plasma Sprayed Hydroxyapatite Coatings During Heat Treatment, Appl. Surf. Sci., 2003, 206(1), p 345-354

    Article  CAS  Google Scholar 

  45. S. Mohanty, Y.K. Inchara, J.A. Crasta, and A. Ananthamurthy, An Unusual Case of Primary Osteosarcoma of the Rib in an Adult, Indian J. Med. Paediatr. Oncol., 2010, 31(1), p 18-20

    Article  Google Scholar 

  46. A.T. Rad, M. Solati-Hashjin, N.A.A. Osman, and S. Faghihi, Improved Bio-Physical Performance of Hydroxyapatite Coatings obtained by Electrophoretic Deposition at Dynamic Voltage, Ceram. Int., 2014, 40(8), p 12681-12691

    Article  Google Scholar 

  47. P.A. Ramires, F. Cosentino, E. Milella, P. Torricelli, G. Giavaresi, and R. Giardino, In Vitro Response of Primary Rat Osteoblasts to Titania/Hydroxyapatite Coatings Compared with Transformed Human Osteoblast-Like Cells, J. Mater. Sci. Mater. Med., 2002, 13(8), p 797-801

    Article  CAS  Google Scholar 

  48. A.R. Boyd, G.A. Burke, H. Duffy, M.L. Cairns, P. O’Hare, and B.J. Meenan, Characterization of Calcium Phosphate/Titanium Dioxide Hybrid Coatings, J. Mater. Sci. Mater. Med., 2008, 19(2), p 485-498

    Article  CAS  Google Scholar 

  49. P. Li, I. Kangasniemi, K. De Groot, and T. Kokubo, Bonelike Hydroxyapatite Induction by a Gel Derived Titania on a Titanium Substrate, J. Am. Ceram. Soc., 1994, 77(5), p 1307-1312

    Article  CAS  Google Scholar 

  50. M. Uchida, H.M. Kim, T. Kokubo, S. Fujibasyashi, and T. Nakamura, Structural Dependence of Apatite Formation on Titania Gels in a Simulated Body Fluid, J. Biomed. Mater. Res. A, 2003, 64(1), p 164-170

    Article  Google Scholar 

  51. T. Osathanon, K. Bespinyowong, M. Arksornnukit, H. Takahashi, and P. Pavasant, Human Osteoblast-Like Cell Spreading and Proliferation on Ti-6Al-7Nb Surfaces of Varying Roughness, J. Oral Sci., 2011, 53(1), p 23-30

    Article  CAS  Google Scholar 

  52. T.M. Lee, R.S. Tsai, E. Chang, C.Y. Yang, and M.R. Yang, The Cell Attachment and Morphology of Neonatal Rat Calvarial Osteoblasts on the Surface of Ti6Al4V and Plasma Sprayed HA Coating: Effect of Surface Roughness and Serum Contents, J. Mater. Sci. Mater. Med., 2002, 13(4), p 341-350

    Article  CAS  Google Scholar 

  53. V. Borsari, G. Giavaresi, M. Fini, P. Torricelli, A. Salito, R. Chiesa, L. Chiusoli, A. Volpert, L. Rimondini, and R. Giardino, Physical Characterization of Different-Roughness Titanium Surfaces, with and without Hydroxyapatite Coating, and their Effect on Human Osteoblast-like Cells, J. Biomed. Mater. Res. B Appl. Biomater., 2005, 75(2), p 359-368

    Article  Google Scholar 

  54. D.D. Deligianni, N.D. Katsala, P.G. Koutsoukos, and Y.F. Missirlis, Effect of Surface Roughness of Hydroxyapatite on Human Bone Marrow Cell Adhesion, Proliferation, Differentiation and Detachment Strength, Biomaterials, 2001, 22(1), p 87-96

    Article  CAS  Google Scholar 

  55. L. Chou, B. Marek, and W.R. Wagner, Effects of Hydroxylapatite Coating Crystallinity on Biosolubility, Cell Attachment Efficiency and Proliferation In Vitro, Biomaterials, 1999, 20(10), p 977-985

    Article  CAS  Google Scholar 

  56. P. Ducheyne, S. Radin, and L. King, The Effect of Calcium Phosphate Ceramic Composition and Structure on In Vitro Behavior. I. Dissolution, J. Biomed. Mater. Res., 1993, 17, p 25-34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harpreet Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarao, T.P.S., Singh, H. & Singh, H. Enhancing Biocompatibility and Corrosion Resistance of Ti-6Al-4V Alloy by Surface Modification Route. J Therm Spray Tech 27, 1388–1400 (2018). https://doi.org/10.1007/s11666-018-0746-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0746-7

Keywords

Navigation