Skip to main content
Log in

Characterization of Microstructure and Texture across N155 Superalloy Weldment Joint with Austenitic Filler Metal

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Thin sheets of N155 superalloy were welded by AMS 5832 filler metal using gas tungsten arc welding (GTAW). The purpose of this study is to investigate the characterization of microstructure and texture across the weldment using electron backscatter diffraction (EBSD) technique. The results indicated that N155 superalloy with the crystal lattice (FCC) experienced annealing process before the welding, which made a lot of coherent twins be created in the base metal due to low stacking fault energy (SFE). Moreover, the coherent twins were created mainly in the heat-affected zone by the presence of cumulative stresses of the molten pool solidification shrinkage. Having the same crystal lattice (FCC), the base metal and the weld metal resulted in the formation of epitaxial grains with the preferred growth direction in the weld metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.J. Donachie Jr., Relationship of Properties to Microstructure in Superalloys. American Society for Metals. Superalloys Source Book, 1984, p 102–111.

  2. M. Durand-Charre, The Microstructure of Superalloys, CRC Press, Boca Raton, 1998

    Google Scholar 

  3. K. Flores and C. Yablinsky, Nickel-Based Superalloys for Advanced Turbine Engines, 2006.

  4. H.R. Ashtiani and P. Rezaei Karami, Prediction of the Microstructural Variations of Coldeworked Pure Aluminum during Annealing Process, Model. Numer. Simul. Mater. Sci., 2015, 5, p 1–14

    CAS  Google Scholar 

  5. C.M. Sellars and J.A. Whiteman, Recrystallization and Grain Growth in Hot Rolling, Met. Sci., 1979, 13, p 187–194

    Article  CAS  Google Scholar 

  6. V.K. Heikkinen, Transformation Twins in V-Bearing Mild Steels, Scand. J. Metall., 1974, 3, p 41–45

    Google Scholar 

  7. G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, Maidenhead, 1988

    Google Scholar 

  8. C. Hwang and I.M. Bernstein, Hydrogen Induced Slip and Twinning in Iron Alloys, Scr. Metall., 1982, 16, p 85–90

    Article  CAS  Google Scholar 

  9. X.P. Chen, L.F. Li, H.F. Sun, L.X. Wang, and Q. Liu, Studies on the Evolution of Annealing Twins during Recrystallization and Grain Growth in Highly Rolled Pure Nickel, Mater. Sci. Eng. A, 2015, 622, p 108–113

    Article  CAS  Google Scholar 

  10. Y. Jin, B. Lin, M. Bernacki, G.S. Rohrer, A.D. Rollett, and N. Bozzolo, Annealing Twin Development during Recrystallization and Grain Growth in Pure Nickel, Mater. Sci. Eng. A, 2014, 597, p 295–303

    Article  CAS  Google Scholar 

  11. X.H. Zhang, J.Q. Chen, and K. Zhang, Study on Grain Refinement of Nickel-Based Filler Metal 52 M Microstructure by Pulse TIG Welding, in 2nd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2017), Atlantis Press, 2017.

  12. V. Randle, Mechanism of Twinning-Induced Grain Boundary Engineering in Low Stacking Fault Energy Materials, Acta Mater., 1999, 47(15-16), p 4187–4196

    Article  CAS  Google Scholar 

  13. G. Gindraux and W. Form, New Concepts of Annealing-Twin Formation in Face Centred Cubic Metals, J. Inst. Metals, 1973, 101, p 85–93

    CAS  Google Scholar 

  14. R.L. Fullman and J.C. Fisher, Formation of Annealing Twins During Grain Growth, J. Appl. Phys., 1951, 22(11), p 1350–1355

    Article  CAS  Google Scholar 

  15. B.J. Pestman et al., Interaction Between Lattice Dislocations and Grain Boundaries in FCC and Ordered Compounds: A Computer Simulation, Philos. Mag. A, 1991, 64(4), p 951–969

    Article  Google Scholar 

  16. S. Poulat, B. Decamps, and L. Priester, Weak-Beam Transmission Electron Microscopy Study of Dislocation Accommodation Processes in Nickel Σ = 3 Grain Boundaries, Philos. Mag. A, 1998, 77(6), p 1381–1397

    Article  CAS  Google Scholar 

  17. J. Jensen, Encyclopedia of Materials: Science and Technology, 2001, p 318–322.

  18. M. Miszczyk, Microstructure and Texture Evolution during Annealing of Plane Strain Compressed Al and Al-1% Mn Alloy Single Crystals, Arch. Metall. Mater., 2011, 56(4), p 933–938

    Article  CAS  Google Scholar 

  19. C.W. Sinclair, F. Robaut, L. Maniguet, J.D. Mithieux, J.H. Schmitt, and Y. Brechet, Recrystallization and Texture in a Ferritic Stainless Steel: An EBSD Study, Adv. Eng. Mater., 2003, 5, p 570–574

    Article  CAS  Google Scholar 

  20. K.E. Easterling, Introduction to the Physical Metallurgy of Welding, Butterworth-Heinemann Ltd., Oxford, 1992

    Google Scholar 

  21. G. Spanos, R.W. Fonda, R.A. Vandermeer, and A. Matuszeski, Microstructural Changes in HSLA-100 Steel Thermally Cycled to Simulate the Heat-Affected Zone during Welding, Metall. Mater. Trans. A, 1995, 26, p 3277–3293

    Article  Google Scholar 

  22. H.W. Paxton, Experimental Verification of the Twin System in Alpha-Iron, Acta Metall., 1953, 1, p 141–143

    Article  CAS  Google Scholar 

  23. K. Poorhaydari, B.M. Patchett, and D.G. Ivey, Transformation Twins in the Weld HAZ of a Low-Carbon High-Strength Microalloyed Steel, Mater. Sci. Eng. A, 2006, 435, p 371–382

    Article  Google Scholar 

  24. S. Kou, Welding Metallurgy, Second Edition 2003, p 170–176.

  25. S.A. David, S.S. Babu, and J.M. Vitek, Welding: Solidification and Microstructure, JOM, 2003, 55(6), p 14–20

    Article  CAS  Google Scholar 

  26. A. Basak and S. Das, Epitaxy and Microstructure Evolution in Metal Additive Manufacturing, Annu. Rev. Mater. Res., 2016, 46(1), p 125–149

    Article  CAS  Google Scholar 

  27. E. Hinchy, M.J. Pomeroy, and J. Michael, The Effect of Single Crystal and Welded Substrates on the Development of Braze Microstructures, J. Alloys Compd., 2017, 690, p 856–863

    Article  CAS  Google Scholar 

  28. A. Keshavarzkermani, M. Sadowski, and L. Ladani, Direct Metal Laser Melting of Inconel 718: Process Impact on Grain Formation and Orientation, J. Alloys Compd., 2018, 736, p 297–305

    Article  CAS  Google Scholar 

  29. Z. Lei and N. Lu, Epitaxy and New Stray Grain Formation Mechanism during Epitaxial Laser Melting Deposition of Inconel 718 on Directionally Solidified Nickel-Based Superalloys, J. Manuf. Process., 2019, 42, p 11–19

    Article  Google Scholar 

  30. T.M. Pollock and W.H. Murphy, The Breakdown of Single-Crystal Solidification in High Refractory Nickel-Base Alloys, Metall. Mater. Trans. A, 1996, 27(4), p 1081–1094

    Article  Google Scholar 

  31. T.D. Anderson, J.N. DuPont, and T. DebRoy, Stray Grain Formation in Welds of Single Crystal Ni-Base Superalloy CMSX-4, Metall. Mater. Trans. A, 2010, 41(1), p 181–193

    Article  Google Scholar 

  32. M. Gaumann, S. Henry, F. Cleton, J.D. Wagniere, and W. Kurz, Epitaxial Laser Metal Forming: Analysis of Microstructure Formation, Mater. Sci. Eng. A, 1999, 271(1), p 232–241

    Article  Google Scholar 

  33. G. Palumbo, K.T. Aust, E.M. Lehockey, U. Erb, and P. Lin, On a More Restrictive Geometric Criterion for “Special” CSL Grain Boundaries, Scr. Mater., 1998, 38, p 1685–1690

    Article  CAS  Google Scholar 

  34. K.J. Al-Fadhalah, Texture and Grain Boundary Character Distribution in a Thermomechanically Processed OFHC Copper, J. Eng. Mater. Technol., 2012, 134, p 011001–011009

    Article  Google Scholar 

  35. G. Chen, Y. Zhang, D.K. Xu, Y.C. Lin, and X. Chen, Low Cycle Fatigue and Creepfatigue Interaction Behavior of Nickel-Base Superalloy GH4169 at Elevated Temperature of 650°C, Mater. Sci. Eng. A, 2016, 655, p 175–182

    Article  CAS  Google Scholar 

  36. K. Deepak, M. Sumantra, C.N. Athreya, D.I. Kim, and B. de Boer, Implication of Grain Boundary Engineering on High Temperature Hot Corrosion of Alloy 617, Corros. Sci., 2016, 106, p 293–297

    Article  CAS  Google Scholar 

  37. B. Li and S. Tin, The Role of Deformation Temperature and Strain on Grain Boundary Engineering of Inconel 600, Mater. Sci. Eng. A, 2014, 603, p 104–113

    Article  CAS  Google Scholar 

  38. A. Rollett, F.J. Humphreys, and G.S. Rohrer, Recrystallization and Related Annealing Phenomena, Elsevier Science, Amsterdam, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirkeyvan Rahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamanian, M., Rahimi, A. & Szpunar, J.A. Characterization of Microstructure and Texture across N155 Superalloy Weldment Joint with Austenitic Filler Metal. J. of Materi Eng and Perform 29, 1964–1973 (2020). https://doi.org/10.1007/s11665-020-04707-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04707-y

Keywords

Navigation