Skip to main content
Log in

Application of Laser Metal Deposition for a New Model of Assembled Camshaft

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work introduces the invention of an alternative camshaft manufacturing method aimed at improving the efficiency of the process and providing a more flexible product. The innovation consists in the laser metal deposition (LMD) of a profile on the shaft in order to realize a coupling stretch where the cam is fixed by interference. Alternative profile materials (1.4404 steel and Inconel 625 alloy) are deposited on a 1.0421 steel tube at different laser power levels and powder flow rate. The effect of the process parameters on the deposited profile is investigated initially through the evaluation of indirect quality attributes, such as deposit dimensions, hardness values, and microstructure. Then, the coupling force resulting from the press-fit test is evaluated. Finally, the best configuration of this new assembled camshaft is tested with a torsion test rig. Performances of the new assembled camshaft are compared with those of traditional products, leading to the validation of this innovative solution. The preliminary feasibility of the LMD application to the production of an assembled camshaft is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Ping, L. Fengjun, C. Anke, and W. Bokang, Fracture Analysis of Chilled Cast Iron Camshaft, China Foundry, 2009, 6, p 104–108

    Google Scholar 

  2. L.C. Kumruoglu, Mechanical and Microstructure Properties of Chilled Cast Iron Camshaft: Experimental and Computer Aided Evaluation, Mater. Des., 2009, 30, p 927–938

    Article  CAS  Google Scholar 

  3. Y. Yang, A. Rosochowski, X. Wangb, and Y. Jiang, Mechanism of “Black Line” Formation in Chilled Cast Iron Camshafts, J. Mater. Process. Technol., 2004, 145, p 264–267

    Article  CAS  Google Scholar 

  4. S. Cecchel, D. Ferrario, A. Panvini, and G. Cornacchia, Lightweight of a Cross Beam for Commercial Vehicles: Development, Testing and Validation, Mater. Des., 2018, 149, p 122–134. https://doi.org/10.1016/j.matdes.2018.04.021

    Article  Google Scholar 

  5. H. Helms and U. Lambrecht, The Potential Contribution of Light-Weighting to Reduce Transport Energy Consumption, Int. J. Life Cycle Assess., 2007, 12, p 58–64

    CAS  Google Scholar 

  6. M. Faccoli, D. Dioni, S. Cecchel, G. Cornacchia, and A. Panvini, An Experimental Study to Optimize the Heat Treatment of Gravity Cast Sr-Modified B356 Aluminum Alloy, Trans. Nonferr. Metals Soc. China, 2017, 27(8), p 1698–1706

    Article  CAS  Google Scholar 

  7. S. Cecchel, G. Cornacchia, and M. Gelfi, Corrosion Behavior of Primary and Secondary AlSi High Pressure Die Casting alloys, Mater. Corros., 2017, 68(9), p 961–969

    Article  CAS  Google Scholar 

  8. A. Isenstadt et al., Lightweighting Technology Development and Trends in U.S. Passenger Vehicles, International Council on Clean Transportation, 2016, https://www.theicct.org/sites/default/files/publications/ICCT_PVtech_lightweighting_wp2016-25.pdf. Accessed 5 June 2019

  9. Q. Zhang, C. Wu, and S. Zhao, Less Loading Tube-Hydroforming Technology on Eccentric Shaft Part by Using Movable Die, Mater. Trans., 2012, 53(5), p 820–825. https://doi.org/10.2320/matertrans.MF201121

    Article  CAS  Google Scholar 

  10. P. Zhang, S. Kou, B. Lin, and Y. Wang, Optimization for Radial Knurling Connection Process of Assembled Camshaft Using Response Surface Method, Int. J. Adv. Manuf. Technol., 2015, 77, p 653–661. https://doi.org/10.1007/s00170-014-6486-z

    Article  Google Scholar 

  11. H. Yamagata, The Science and Technology of Materials in Automotive Engines, Woodhead Publishing Limited, Sawston, 2005, p 128

    Book  Google Scholar 

  12. R. Quaas, Method and Assembly System for Manufacturing an Assembled Camshaft, Patent Number US20060005385 A1, 2004

  13. Y.K. Kim, Y.S. Park, J.H. Song, D.K. Han, H.Y. Kim, Method of Manufacturing Camshaft, Patent Number US20140223736 A1, 2011

  14. P. Blanchard, S. Nigarura, J.R.L. Trasorras, and R. Wordsworth, Assembled Camshaft with Sintered Cam Lobes: Torsional Fatigue Strength and Wear Performance, SAE Tech. Pap. Ser., 2000, 1, p 1–10. https://doi.org/10.4271/2000-01-0397

    Article  Google Scholar 

  15. C. Mondini, D. Ferrario, Method for Manufacturing a Shaft with Shaped Profile, Patent number WO2016181363 A1, 2016

  16. T. Torims, The Application of Laser Cladding to Mechanical Component Repair, Renovation and Regeneration, Chapter 32, DAAAM International Scientific Book 2013, B. Katalinic and Z. Tekic, Ed., DAAAM International, Vienna, Austria, 2013, p 587–608 https://doi.org/10.2507/daaam.scibook.2013.32

    Chapter  Google Scholar 

  17. S. Kaierle, A. Barroi, C. Noelke, J. Hermsdorf, L. Overmeyer, and H. Haferkamp, Review on Laser Deposition Welding: From Micro to Macro, Phys. Procedia, 2012, 39, p 336–345

    Article  Google Scholar 

  18. S. Nowotny, Current Use of Laser Technology for Build-Up Welding Applications, Surf. Eng., 2011, 27(4), p 231–233

    CAS  Google Scholar 

  19. T.E. Abioye, J. Folkes, and A.T. Clare, A Parametric Study of Inconel 625 Wire Laser Deposition, J. Mater. Process. Technol., 2013, 213, p 2145–2151. https://doi.org/10.1016/j.jmatprotec.2013.06.007

    Article  CAS  Google Scholar 

  20. F. Caiazzo and V. Alfieri, Laser-AIDED Directed Energy Deposition of Steel Powder Over Flat Surfaces and Edges, Materials, 2018, 11(435), p 1–15. https://doi.org/10.3390/ma11030435

    Article  CAS  Google Scholar 

  21. X. He and J. Mazumder, Transport Phenomena During Direct Metal Deposition, J. Appl. Phys., 2007, 101, p 053113. https://doi.org/10.1063/1.2710780

    Article  CAS  Google Scholar 

  22. K. Zhang, S. Wang, W. Liu, and X. Shang, Characterization of Stainless Steel Parts by Laser Metal Deposition Shaping, Mater. Des., 2014, 55, p 104–119. https://doi.org/10.1016/j.matdes.2013.09.006

    Article  CAS  Google Scholar 

  23. https://www.gtv-mbh.com/cms/upload/downloads/en/Cladding_and_Hardfacing_Powders_2014.pdf

  24. T.E. Abioye, P.K. Farayibi, and A.T. Clare, A Comparative Study of Inconel 625 Laser Cladding by Wire and Powder Feedstock, Mater. Manuf. Process., 2017, 32(14), p 1653–1659. https://doi.org/10.1080/10426914.2017.1317787

    Article  CAS  Google Scholar 

  25. G. Li, J. Huang, and Y. Wu, An Investigation on Microstructure and Properties of Dissimilar Welded Inconel 625 and SUS 304 Using High Power CO2 Laser, Int. J. Adv. Manuf. Technol., 2015, 76(5), p 1203–1214

    Article  Google Scholar 

  26. E. Toyserkani, A. Khajepour, and S. Corbin, Laser Cladding, CRC Press, Boca Raton, FL, 2005

    Google Scholar 

Download references

Acknowledgment

The authors are grateful for the support given in the execution of test rigs by Streparava staff, particularly to Engineer Luca Cordioli and Engineer Fabio Cibolini.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Cecchel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cecchel, S., Ferrario, D., Mondini, C. et al. Application of Laser Metal Deposition for a New Model of Assembled Camshaft. J. of Materi Eng and Perform 28, 7756–7767 (2019). https://doi.org/10.1007/s11665-019-04504-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04504-2

Keywords

Navigation