Skip to main content
Log in

Development of Constitutive Relationship for Thermomechanical Processing of Al-SiC Composite Eliminating Deformation Heating

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Constitutive equations are useful for computational or numerical tools in describing the thermomechanical behavior of Al/SiC composites to develop the lightweight component using bulk metal forming. In this study, the uniaxial compression test of powder metallurgy-based Al/7 vol.% SiCp composite samples in the temperature range of 250-500 °C and at the strain rates of 0.001, 0.007, 0.05, 0.3, 2.2 and 15 s−1 was performed on a Gleeble-3800 thermomechanical simulator. An equation correlating actual (measured) temperature with the true stress in real time has been established for each of the strain rates. Further, the true stress was corrected by eliminating the effect of deformation heating using this equation based on the experimental observations. The temperature-corrected true stress data were then used for development of constitutive equations using the Arrhenius model, strain-compensated Arrhenius model and modified Johnson–Cook (m-JC) model. The material parameters in the m-JC model were calculated at different combinations of temperatures and strain rates. The established constitutive equations are validated with temperature-corrected true stress from the experiment. Further, these equations are verified with the experimental true stress that was obtained using different inputs of temperatures and strain rates in a compression test. The correlation coefficient (R) and absolute average relative error reflect the accuracy of constitutive models. The result indicates that the calculated true stress by the established strain-compensated Arrhenius model is in good agreement with that of experimentally measured true stress with a correlation coefficient of 0.996 and relative error of 3.83%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

T :

Deformation temperature (°C)

ΔT :

Rise in temperature (°C)

Ε :

True strain or plastic strain

Σ :

True stress (after eliminating effect of deformation heating) (MPa)

σ o :

True stress (MPa)

\(\dot{\varepsilon }\) :

Strain rate (sr) (s−1)

Q :

Deformation activation energy (kJ/mol)

R′ :

Universal gas constant (kJ/mol K)

Α :

Stress multiplier (MPa−1)

n, A, C, λ 1, λ 2 :

Material constant

Z :

Zener–Hollomon parameter (s−1)

\(\dot{\varepsilon }_{\text{r}}\) :

Reference strain rate (s−1)

T r :

Reference deformation temperature (°C)

\(\dot{\varepsilon }^{*}\) :

Ratio of strain rate to reference strain rate

R :

Correlation factor

References

  1. A.M. De Sanctis, E. Evangelista, A. Forcellese, and Y.Z. Wang, Hot Formability Studies on 359/SiC/20p and Their Application in Forging Optimisation, Appl. Compos. Mater., 1996, 3, p 179–198. https://doi.org/10.1007/BF00135055

    Article  Google Scholar 

  2. S.V. Prasad and R. Asthana, Aluminum Metal-Matrix Composites for Automotive Applications: Tribological Considerations, Tribol. Lett., 2004, 17, p 445–453. https://doi.org/10.1023/B:TRIL.0000044492.91991.f3

    Article  CAS  Google Scholar 

  3. B. Cantor, P. Grant, and C. Johnston, Automotive Engineering: Lightweight, Functional, and Novel Materials, CRC Press, Boca Raton, 2008

    Book  Google Scholar 

  4. D. Hull and T.W. Clyne, An Introduction to Composite Materials, 2nd ed., Cambridge University Press, New York, 1996

    Book  Google Scholar 

  5. T.W. Clyne and P.J. Whithers, An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, 1995

    Google Scholar 

  6. N. Chawla, J.J. Williams, and R. Saha, Mechanical Behavior and Microstructure Characterization of Sinter-Forged SiC Particle Reinforced Aluminum Matrix Composites, J. Light Met., 2002, 2, p 215–227. https://doi.org/10.1016/S1471-5317(03)00005-1

    Article  Google Scholar 

  7. M. Rosso, Ceramic and Metal Matrix Composites: Routes and Properties, J. Mater. Process. Technol., 2006, 175, p 364–375. https://doi.org/10.1016/j.jmatprotec.2005.04.038

    Article  CAS  Google Scholar 

  8. B. Cantor, F.P. Dunne, and I.C. Stone, Metal and Ceramic Matrix Composites, CRC Press, Boca Raton, 2003

    Book  Google Scholar 

  9. A.K. Kaw, Mechanics of Composite Materials, 2nd ed., CRC Press, Boca Raton, 2005

    Book  Google Scholar 

  10. G.S. Cole and A.M. Sherman, Light Weight Materials for Automotive Applications, Mater. Charact., 1995, 35, p 3–9. https://doi.org/10.1016/1044-5803(95)00063-1

    Article  CAS  Google Scholar 

  11. N. Chawla and Y.-L. Shen, Mechanical Behavior of Particle Reinforced Metal Matrix Composites, Adv. Eng. Mater., 2001, 3, p 357–370. 10.1002/1527-2648(200106)3:6<357::AID-ADEM357>3.3.CO;2-9

    Article  CAS  Google Scholar 

  12. K.K. Chawla, Composite Materials: Science and Engineering, Springer, New York, 2012

    Book  Google Scholar 

  13. J.W. Kaczmar, K. Pietrzak, and W. Wlosinski, The Production and Application of Metal Matrix Composite Materials, J. Mater. Process. Technol., 2000, 106, p 58–67. https://doi.org/10.1016/S0924-0136(00)00639-7

    Article  Google Scholar 

  14. X. Li, C. Liu, K. Luo, M. Ma, and R. Liu, Hot Deformation Behaviour of SiC/AA6061 Composites Prepared by Spark Plasma Sintering, J. Mater. Sci. Technol., 2016, 32, p 291–297. https://doi.org/10.1016/j.jmst.2015.12.006

    Article  Google Scholar 

  15. J.O. Park, K.J. Kim, D.Y. Kang, Y.S. Lee, and Y.H. Kim, An Experimental Study on the Optimization of Powder Forging Process Parameters for an Aluminum-Alloy Piston, J. Mater. Process. Technol., 2001, 113, p 486–492. https://doi.org/10.1016/S0924-0136(01)00663-X

    Article  CAS  Google Scholar 

  16. J.M. Torralba, C.E. Da Costa, and F. Velasco, P/M Aluminum Matrix Composites: An Overview, J. Mater. Process. Technol., 2003, 133, p 203–206. https://doi.org/10.1016/S0924-0136(02)00234-0

    Article  CAS  Google Scholar 

  17. Y.B. Liu, S.C. Lim, L. Lu, and M.O. Lai, Recent Development in the Fabrication of Metal Matrix-Particulate Composites Using Powder Metallurgy Techniques, J. Mater. Sci., 1994, 29, p 1999–2007

    Article  CAS  Google Scholar 

  18. H.R.R. Ashtiani and P. Shahsavari, Strain-Dependent Constitutive Equations to Predict High Temperature Flow Behavior of AA2030 Aluminum Alloy, Mech. Mater., 2016, 100, p 209–218. https://doi.org/10.1016/j.mechmat.2016.06.018

    Article  Google Scholar 

  19. D. Trimble and G.E. O’Donnell, Constitutive Modelling for Elevated Temperature Flow Behaviour of AA7075, Mater. Des., 2015, 76, p 150–168. https://doi.org/10.1016/j.matdes.2015.03.062

    Article  CAS  Google Scholar 

  20. L. Chen, G. Zhao, and J. Yu, Hot Deformation Behavior and Constitutive Modeling of Homogenized 6026 Aluminum Alloy, Mater. Des., 2015, 74, p 25–35. https://doi.org/10.1016/j.matdes.2015.02.024

    Article  CAS  Google Scholar 

  21. J.C. Shao, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, Y. Liu, and K. Yang, Constitutive Flow Behavior and Hot Workability of Powder Metallurgy Processed 20vol.%SiCP/2024Al Composite, Mater. Sci. Eng. A, 2010, 527, p 7865–7872. https://doi.org/10.1016/j.msea.2010.08.080

    Article  CAS  Google Scholar 

  22. M.R. Rokni, A.A. Roostaei, and A. Abolhasani, Constitutive Base Analysis of a 7075 Aluminum Alloy During Hot Compression Testing, Mater. Des., 2011, 32, p 4955–4960. https://doi.org/10.1016/j.matdes.2011.05.040

    Article  CAS  Google Scholar 

  23. S. Chen, J. Teng, H. Luo, Y. Wang, and H. Zhang, Hot Deformation Characteristics and Mechanism of PM 8009Al/SiC Particle Reinforced Composites, Mater. Sci. Eng. A, 2017, 697, p 194–202. https://doi.org/10.1016/j.msea.2017.05.016

    Article  CAS  Google Scholar 

  24. L. Zhou, Z.Y. Huang, C.Z. Wang, X.X. Zhang, B.L. Xiao, and Z.Y. Ma, Constitutive Flow Behaviour and Finite Element Simulation of Hot Rolling of SiCp/2009Al Composite, Mech. Mater., 2016, 93, p 32–42. https://doi.org/10.1016/j.mechmat.2015.10.010

    Article  Google Scholar 

  25. W. Xu, X. Jin, W. Xiong, X. Zeng, and D. Shan, Study on Hot Deformation Behavior and Workability of Squeeze-Cast 20 vol%SiCw/6061Al Composites Using Processing Map, Mater. Charact., 2018, 135, p 154–166. https://doi.org/10.1016/j.matchar.2017.11.026

    Article  CAS  Google Scholar 

  26. H. Shiming, X. Jingpei, W. Aiqin, W. Wenyan, and L. Jiwen, Hot Deformation Behavior and Processing Map of SiCp/2024Al Composite, Rare Met. Mater. Eng., 2014, 43, p 2912–2916. https://doi.org/10.1016/S1875-5372(15)60032-7

    Article  Google Scholar 

  27. P. Zhang, F. Li, and Q. Wan, Constitutive Equation and Processing Map for Hot Deformation of SiC Particles Reinforced Metal Matrix Composites, J. Mater. Eng. Perform., 2010, 19, p 1290–1297. https://doi.org/10.1007/s11665-010-9611-7

    Article  CAS  Google Scholar 

  28. G.R. Johnson, W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, in 7th International Symposium on Ballistics (1983), pp. 541–547. https://doi.org/10.1038/nrm3209.

    Article  CAS  Google Scholar 

  29. H.Y. Li, X.F. Wang, J.Y. Duan, and J.J. Liu, A Modified Johnson Cook model for Elevated Temperature Flow Behavior of T24 Steel, Mater. Sci. Eng. A, 2013, 577, p 138–146. https://doi.org/10.1016/j.msea.2013.04.041

    Article  CAS  Google Scholar 

  30. D. Samantaray, S. Mandal, A.K. Bhaduri, S. Venugopal, and P.V. Sivaprasad, Analysis and Mathematical Modelling of Elevated Temperature Flow Behaviour of Austenitic Stainless Steels, Mater. Sci. Eng. A, 2011, 528, p 1937–1943. https://doi.org/10.1016/j.msea.2010.11.011

    Article  CAS  Google Scholar 

  31. S.V.S.N. Murty, A. Sarkar, P.R. Narayanan, P.V. Venkitakrishnan, and J. Mukhopadhyay, Development of Processing Maps and Constitutive Relationship for Thermomechanical Processing of Aluminum Alloy AA2219, J. Mater. Eng. Perform., 2017, 26, p 2190–2203. https://doi.org/10.1007/s11665-017-2669-8

    Article  CAS  Google Scholar 

  32. J.Q. Tan, M. Zhan, S. Liu, T. Huang, J. Guo, and H. Yang, A Modified Johnson-Cook Model for Tensile Flow Behaviors of 7050-T7451 Aluminum Alloy at High Strain Rates, Mater. Sci. Eng. A, 2015, 631, p 214–219. https://doi.org/10.1016/j.msea.2015.02.010

    Article  CAS  Google Scholar 

  33. A. Tabei, F.H. Abed, G.Z. Voyiadjis, and H. Garmestani, Constitutive Modeling of Ti-6Al-4V at a Wide Range of Temperatures and Strain Rates, Eur. J. Mech. A/Solids, 2017, 63, p 128–135. https://doi.org/10.1016/j.euromechsol.2017.01.005

    Article  Google Scholar 

  34. A.E. Buzyurkin, I.L. Gladky, and E.I. Kraus, Determination and Verification of Johnson-Cook Model Parameters at High-Speed Deformation of Titanium Alloys, Aerosp. Sci. Technol., 2015, 45, p 121–127. https://doi.org/10.1016/j.ast.2015.05.001

    Article  Google Scholar 

  35. A. Abbasi-Bani, A. Zarei-Hanzaki, M.H. Pishbin, and N. Haghdadi, A Comparative Study on the Capability of Johnson-Cook and Arrhenius-Type Constitutive Equations to Describe the Flow Behavior of Mg-6Al-1Zn Alloy, Mech. Mater., 2014, 71, p 52–61. https://doi.org/10.1016/j.mechmat.2013.12.001

    Article  Google Scholar 

  36. W. Song, J. Ning, X. Mao, and H. Tang, A Modified Johnson-Cook Model for Titanium Matrix Composites Reinforced with Titanium Carbide Particles at Elevated Temperatures, Mater. Sci. Eng. A, 2013, 576, p 280–289. https://doi.org/10.1016/j.msea.2013.04.014

    Article  CAS  Google Scholar 

  37. A.K. Maheshwari, K.K. Pathak, N. Ramakrishnan, and S.P. Narayan, Modified Johnson-Cook Material Flow Model for Hot Deformation Processing, J. Mater. Sci., 2010, 45, p 859–864. https://doi.org/10.1007/s10853-009-4010-x

    Article  CAS  Google Scholar 

  38. D. Zhao, Temperature Correction in Compression Tests, J. Mater. Process. Technol., 1993, 36, p 467–471. https://doi.org/10.1016/0924-0136(93)90058-E

    Article  Google Scholar 

  39. R.L. Goetz and S.L. Semiatin, The Adiabatic Correction Factor for Deformation Heating During the Uniaxial Compression Test, J. Mater. Eng. Perform., 2001, 10, p 710–717. https://doi.org/10.1361/105994901770344593

    Article  CAS  Google Scholar 

  40. M.C. Mataya and V.E. Sackschewsky, Effect of Internal Heating During Hot Compression on the Stress-Strain Behavior of Alloy 304L, Metall. Mater. Trans. A, 1994, 25, p 2737–2752. https://doi.org/10.1007/BF02649226

    Article  Google Scholar 

  41. L. Li, J. Zhou, and J. Duszczyk, Determination of a Constitutive Relationship for AZ31B Magnesium Alloy and Validation Through Comparison Between Simulated and Real Extrusion, J. Mater. Process. Technol., 2006, 172, p 372–380. https://doi.org/10.1016/j.jmatprotec.2005.09.021

    Article  CAS  Google Scholar 

  42. K.C. Nayak and P.P. Date, Hot Deformation Flow Behavior of Powder Metallurgy Based Al-SiC and Al- Al2O3 Composite in a Single Step and Two-Step Uni-Axial Compression, Mater. Charact., 2019, 151, p 563–581. https://doi.org/10.1016/j.matchar.2019.03.047

    Article  CAS  Google Scholar 

  43. Y.V.R.K. Prasad, K.P. Rao, and S. Sasidhar, Hot Working Guide: A Compendium of Processing Maps, 2nd ed., ASM International, New York, 2015

    Google Scholar 

  44. J.J. Jonas, C.M. Sellars, and W.M. Tegart, Strength and Structure Under Hot-Working Conditions, Metall. Rev., 1969, 14, p 1–24. https://doi.org/10.1179/imtlr.1972.17.1.1

    Article  Google Scholar 

  45. C.M. Sellars and W.M. Tegart, Hot Workabil. Int. Metall. Rev., 1972, 17, p 1–24

    Article  CAS  Google Scholar 

  46. C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32. https://doi.org/10.1063/1.1707363

    Article  Google Scholar 

  47. N. Nayan, G. Singh, S.V.S.N. Murty, A.K. Jha, B. Pant, and K.M. George, High-Temperature Deformation Processing Map Approach for Obtaining the Desired Microstructure in a Multi-Component (Ni-Ti-Cu-Fe) Alloy, Metall. Mater. Trans. A, 2015, 46A, p 2201–2215. https://doi.org/10.1007/s11661-015-2799-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Subray L. Kamath, CoEST (Centre of Excellence in Steel Technology), IIT Bombay, for technical support during experiments on Gleeble-3800. Also, the authors thank SAIF (Sophisticated Analytical Instrument Facility), IIT Bombay, for providing ESEM for microstructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanhu Charan Nayak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, K.C., Date, P.P. Development of Constitutive Relationship for Thermomechanical Processing of Al-SiC Composite Eliminating Deformation Heating. J. of Materi Eng and Perform 28, 5323–5343 (2019). https://doi.org/10.1007/s11665-019-04277-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04277-8

Keywords

Navigation