Skip to main content
Log in

Development of Processing Maps and Constitutive Relationship for Thermomechanical Processing of Aluminum Alloy AA2219

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Isothermal uniaxial compression tests were conducted on aluminum alloy AA2219 to study the evolution of microstructure over a wide range of temperatures (300-500 °C) and strain rates (0.001-100 s−1) with a view to study the flow behavior and concurrent microstructural evolution. True stress-true strain curves showed only a gradual flow softening at all temperatures except at 300 °C where strain hardening was followed by severe flow softening. Processing map delineating the stable ‘safe’ and unstable ‘unsafe’ regions during hot working is developed and validated by comparing the microstructures observed in the deformed compression specimens. Optimum processing parameters (temperature 450 °C and strain rate 0.001 s−1) for hot deformation of AA2219 were proposed based on contour maps of efficiency of power dissipation and strain rate sensitivity parameter. The activation energy value (Q avg) of AA2219 for hot working was computed to be 169 kJ/mol. Finally, a constitutive equation for hot working of AA2219 was established as: \(\dot{\varepsilon } = 4.99 \times 10^{9} \cdot \exp (0.06149\sigma ) \cdot \exp \left( { - 168.958/RT} \right)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Zhang, B. Chen, and B. Zhang, Effect of Initial Microstructure on the Hot Compression Deformation Behaviour of a 2219 Aluminium Alloy, Mater. Des., 2012, 34, p 15–21

    Article  Google Scholar 

  2. S.G. Pantelakis and N.D. Alexopoulos, Assessment of the Ability of Conventional and Advanced Wrought Aluminium Alloys for Mechanical Performance in Light-Weight Applications, Mater. Des., 2008, 29, p 80–91

    Article  Google Scholar 

  3. N. Nayan, N.P. Gurao, S.V.S. Narayana Murty, A.K. Jha, B. Pant, S.C. Sharma, and K.M. George, Microstructure and Micro-Texture Evolution During Large Strain Deformation of an Aluminium-Copper-Lithium Alloy AA2195, Mater. Des., 2015, 65, p 862–868

    Article  Google Scholar 

  4. H.J. Frost and M.F. Ashby, Deformation Mechanism Maps, The Plasticity and Creep of Metals and Ceramics, Pergamon Press, London, 1982

    Google Scholar 

  5. R. Raj, Development of a Processing Map for Use in Warm Forming and Hot Forming Process, Metall. Trans. A, 1981, 12, p 1089–1097

    Article  Google Scholar 

  6. S.L. Semiatin and G.D. Lahoti, The Occurrence of Shear Bands in Isothermal Hot Forging, Metall. Trans. A, 1992, 13, p 275–288

    Article  Google Scholar 

  7. G.E. Dieter, Metals Hand Book, 9th ed., vol. 14, American Society for Metals, Metals Park, OH, 1988, p 363–372

    Google Scholar 

  8. S.L. Semiatin and J.J. Jonas, Formability and Workability of Metals: Plastic Instability and Flow Localization, American Society for Metals, Metals park, Ohio, 1984

    Google Scholar 

  9. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behaviour in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15A, p 1883–1892

    Article  Google Scholar 

  10. H.L. Gegel, J.C. Malas, S.M. Doraivelu, and V.A. Shende, Modeling Techniques Used In Forging Process Design, Metals Handbook, Forming and Forging, vol. 14, ASM International, Metals Park, OH, 1988, p 417–438

    Google Scholar 

  11. J.M. Alexander, Mapping Dynamic Material Behaviour in Modeling of Hot Deformation of Steels, J.G. Lenard, Ed., Springer, Berlin, 1989, p 101–115

    Chapter  Google Scholar 

  12. H.J. McQueen, Elevated Temperature Deformation at Forming Rates of 10−2–102 s−1, Metall. Mater. Trans. A, 2002, 33A, p 345–362

    Article  Google Scholar 

  13. R. Kaibyshev, O. Sitdikov, I. Mazurina, and D.R. Leuser, Deformation Behaviour of 2219 Al Alloy, Mater. Sci. Eng. A, 2002, 34, p 104–113

    Article  Google Scholar 

  14. H. Ziegler, Progress in Solid Mechanics, I.N. Sneddon and R. Hill, Ed., Wiley, New York, NY, 1965, p 91–193

    Google Scholar 

  15. S.V.S. Narayana Murty, M.S. Sarma, and B. Nageswara Rao, On the Evaluation of Efficiency Parameter in Processing Maps, Metall. Mater. Trans. A, 1997, 28A, p 1581–1582

    Article  Google Scholar 

  16. S.V.S. Narayana Murty, B. Nageswara Rao, and B.P. Kashyap, Instability Criteria for Hot Deformation of Materials, Int. Mater. Rev., 2000, 45, p 15–26

    Article  Google Scholar 

  17. S.V.S. Narayana Murty and B. Nageswara Rao, Ziegler’s Criterion on the Instability Regions in Processing Maps, J. Mater. Sci. Lett., 1998, 17, p 1203–1205

    Article  Google Scholar 

  18. S.V.S. Narayana Murty and B. Nageswara Rao, On the Dynamic Material Model for the Hot Deformation of Materials, J. Mater. Sci. Lett., 1999, 18, p 1757–1758

    Article  Google Scholar 

  19. S.V.S. Narayana Murty and B. NageswaraRao, On the Development of Instability Criteria During Hot Working with Reference to IN 718, Mater. Sci. Eng. A, 1998, 254, p 76–82

    Article  Google Scholar 

  20. S.V.S. Narayana Murty, B. Nageswara Rao, and B.P. Kashyap, Development and Validation of a Processing Map for AFNOR 7020 Aluminum Alloy, Mater. Sci. Technol., 2004, 20, p 772–782

    Article  Google Scholar 

  21. C.M. Sellars and WJMcG Tegart, Hot Workability, Int. Metall. Rev., 1972, 17, p 1–24 ((Review 158)

    Google Scholar 

  22. J. Jonas, C.M. Sellars, and WJMcG Tegart, Strength and Structure Under Hot-Working Conditions, Metall. Rev., 1972, 14, p 1–24 ((Review 130))

    Google Scholar 

  23. H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63

    Article  Google Scholar 

  24. C. Shi and X.-G. Chen, Evolution of Activation Energies for Hot Deformation of 7150 Aluminum Alloys with Various Zr and V Additions, Mater. Sci. Eng. A, 2016, 650, p 197–209

    Article  Google Scholar 

  25. C. Shi, W. Mao, and X.-G. Chen, Evolution of Activation Energy During Hot Deformation of AA7150 Aluminum Alloy, Mater. Sci. Eng. A, 2013, 571, p 83–91

    Article  Google Scholar 

  26. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60, p 130–207

    Article  Google Scholar 

  27. R. Kaibyshev, I. Mazurina, and O. Sitdikov, Geometric Dynamic Recrystallization in an AA2219 Alloy Deformed to Large Strains at an Elevated Temperature, Mater. Sci. Forum, 2004, 467–470, p 1199–1204

    Article  Google Scholar 

  28. N. Nayan, N.P. Gurao, S.V.S. Narayana Murty, A.K. Jha, B. Pant, and K.M. George, Microstructure and Micro-Texture Evolution During Large Strain Deformation of Inconel Alloy IN718, Mater. Charact., 2015, 110, p 236–241

    Article  Google Scholar 

  29. E.T. George and D.S. MacKenzie, Ed., Handbook of Aluminium: Volume 2: Alloy Production and Materials Manufacturing, Marcel Dekker Inc., New York, 2003, p 213–214

    Google Scholar 

  30. R. Kaibyshev, I. Kazakulov, D. Gromov, F. Musin, D.R. Leuser, and T.G. Nieh, Superplasticity in a 2219 Alumnium Alloy, Scr. Mater., 2001, 44, p 2411–2417

    Article  Google Scholar 

  31. C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22

    Article  Google Scholar 

  32. T. Sheppard, Ed., Extrusion of Aluminium Alloys, 1st ed., Springer Science+Business Media, Dordrecht, 1999, p 135

    Google Scholar 

  33. K.E. Tello, A.P. Gerlich, and P.F. Mendez, Constants for Hot Deformation Constitutive Models for Recent Experimental Data, Sci. Technol. Weld. Join., 2010, 15, p 260–266

    Article  Google Scholar 

  34. E. Cerri, E. Evangelista, A. Forcellese, and H.J. McQueen, Comparative Hot Workability of 7012 and 7075 Alloys After Different Pre-Treatments, Mater. Sci. Eng. A, 1995, 197, p 181–198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. S. Narayana Murty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayana Murty, S.V.S., Sarkar, A., Ramesh Narayanan, P. et al. Development of Processing Maps and Constitutive Relationship for Thermomechanical Processing of Aluminum Alloy AA2219. J. of Materi Eng and Perform 26, 2190–2203 (2017). https://doi.org/10.1007/s11665-017-2669-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2669-8

Keywords

Navigation