Skip to main content
Log in

Grain Size Effect of Commercial Pure Titanium Foils on Mechanical Properties, Fracture Behaviors and Constitutive Models

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The constitutive models based on grain size effect are crucial for analyzing the deformation of metal foils. Previous investigations on the constitutive models concentrate on the foils whose thickness/average grain diameter (T/D) ratios are more than 3. In this study, the commercial pure titanium foils with thickness of 0.1 and 0.2 mm were employed as the experimental materials. The mechanical properties of foils with dimensions of nine different T/D ratios categorized into three ranges (T/D < 1, 1 ≤ T/D < 3, T/D ≥ 3)were tested. Meanwhile, the fracture behaviors and fracture mechanisms of the samples with different T/D ratios were compared and analyzed. Besides, three constitutive models incorporating the surface layer effect and grain boundary strengthening effect were established for the three T/D ratio ranges correspondingly. In these models, the thickness of the surface layers is set T for T/D < 1 foils, D for T/D > 3, and increases with D linearly in 1 ≤ T/D < 3. The results calculated by the three models were compared. The experiments indicate that those models are all in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.T. Gau, C. Principe, and M. Yu, Springback Behavior of Brass in Micro Sheet Forming, J. Mater. Process. Technol., 2007, 191, p 7–10

    Article  Google Scholar 

  2. T.A. Kals and R. Eckstein, Miniaturization in Sheet Metal Working, J. Mater. Process. Technol., 2000, 103, p 95–101

    Article  Google Scholar 

  3. L. Wang, E. Mostaed, X. Cao, G. Huang, A. Fabrizi, F. Bonollo, C. Chi, and M. Vedani, Effects of Texture and Grain Size on Mechanical Properties of AZ80 Magnesium Alloys at Lower Temperatures, Mater. Des., 2016, 89, p 1–8

    Article  Google Scholar 

  4. S. Chen, X. Liu, and L. Liu, Effects of Grain Size and Heterogeneity on the Mechanical Behavior of Foil Rolling, Int. J. Mech. Sci., 2015, 100, p 226–236

    Article  Google Scholar 

  5. X. Ma, R. Lapovok, C. Gu, A. Molotnikov, Y. Estrin, E.V. Pereloma, C.H.J. Davies, and P.D. Hodgson, Deep drawing Behaviour of Ultrafine Grained Copper: Modelling and Experiment, J. Mater. Sci., 2009, 44, p 3807–3812

    Article  Google Scholar 

  6. X. Lai, L. Peng, P. Hu, S. Lan, and J. Ni, Material Behavior Modelling in Micro/Meso-Scale Forming Process with Considering Size/Scale Effects, Comput. Mater. Sci., 2008, 43, p 1003–1009

    Article  Google Scholar 

  7. W.L. Chan and M.W. Fu, Studies of the Interactive Effect of Specimen and Grain Sizes on the Plastic Deformation Behavior in Microforming, Int. J. Adv. Manuf. Technol., 2012, 62, p 989–1000

    Article  Google Scholar 

  8. U.F. Kocks, The Relation Between Polycrystal Deformation and Single-Crystal Deformation, Metall. Mater. Trans. B, 1970, 1, p 1121–1143

    Google Scholar 

  9. H. Gleiter, Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, 48, p 1–29

    Article  Google Scholar 

  10. T. Eliash, M. Kazakevich, V.N. Semenov, and E. Rabkin, Nanohardness of Molybdenum in the Vicinity of Grain boundaries and Triple Junctions, Acta Mater., 2008, 56, p 5640–5652

    Article  Google Scholar 

  11. W.L. Chan and M.W. Fu, Experimental Studies and Numerical Modeling of the Specimen and Grain Size Effects on the Flow Stress of Sheet Metal in Microforming, Mater. Sci. Eng. A Struct., 2011, 528, p 7674–7683

    Article  Google Scholar 

  12. E.O. Hall, The Deformation and Ageing of Mild Steel: III, Discussion of Results, Proc. Phys. Soc. B, 2002, 643, p 747–752

    Google Scholar 

  13. Q. Zheng, T. Shimizu, and M. Yang, Scale Effect on Springback Behavior of Pure Titanium Foils in Microbending at Elevated Temperature, J. Mater. Process. Technol., 2016, 230, p 233–243

    Article  Google Scholar 

  14. Z. Fang, Z. Jiang, X. Wang, C. Zhou, D. Wei, and X. Liu, Grain Size Effect of Thickness/Average Grain Size on Mechanical Behaviour, Fracture Mechanism and Constitutive Model for Phosphor Bronze Foil, Int. J. Adv. Manuf. Technol., 2015, 79, p 1905–1914

    Article  Google Scholar 

  15. H. Baseri and S. Sadeghian, Effects of Nanopowder TiO2-Mixed Dielectric and Rotary Tool on EDM, Int. J. Adv. Manuf. Technol., 2016, 83, p 519–528

    Article  Google Scholar 

  16. W. Zheng, X. Lin, B. Tang, and G. Wang, Experimental Investigation on Strengthening Effect of Cu2O Film in Micro Sheet Forming of Copper, J. Mater. Eng. Perform., 2016, 25, p 1757–1762

    Article  Google Scholar 

  17. H.S. Kim and W.J. Kim, Annealing Effects on the Corrosion Resistance of Ultrafine-Grained Pure Titanium, Corros. Sci., 2014, 89, p 331–337

    Article  Google Scholar 

  18. L. Li, Z. Zhang, and G. Shen, Effect of Grain Size on the Tensile Deformation Mechanisms of Commercial Pure Titanium as Revealed by Acoustic Emission, J. Mater. Eng. Perform., 2015, 24, p 1975–1986

    Article  Google Scholar 

  19. C.-C. Chen and C.-P. Jiang, Grain Size Effect in the Micro-V-Bending Process of Thin Metal Sheets, Mater. Manuf. Processes, 2011, 26, p 78–83

    Article  Google Scholar 

  20. D. Das, A. Samanta, and P.P. Chattopadhyay, Deformation Behavior of Bulk Ultrafine Grained Copper Prepared by Sub-Zero Rolling and Controlled Recrystallization, Mater. Manuf. Processes, 2006, 21, p 698–702

    Article  Google Scholar 

  21. M.A. Meyersm and E. Ashworth, A Model for the Effect of Grain Size on the Yield Stress of Metals, Philos. Mag. A, 1982, 46, p 737–759

    Article  Google Scholar 

  22. H.H. Fu, D.J. Benson, and M.A. Meyers, Analytical and Computational Description of Effect of Grain Size on Yield Stress of Metals, Acta Mater., 2001, 49, p 2567–2582

    Article  Google Scholar 

  23. B. Meng and M.W. Fu, Size Effect on Deformation Behavior and Ductile fracture in Microforming of Pure Copper Sheets Considering Free Surface Roughening, Mater. Des., 2015, 83, p 400–412

    Google Scholar 

  24. H.K. Rafi, T.L. Starr, and B.E. Stucker, A Comparison of the Tensile, Fatigue, and Fracture Behavior of Ti-6Al-4 V and 15-5 PH Stainless Steel Parts Made by Selective Laser Melting, Int. J. Adv. Manuf. Technol., 2013, 69, p 1299–1309

    Article  Google Scholar 

  25. X. Li, K. Lei, P. Song, X. Liu, F. Zhang, J. Li, and J. Chen, Strengthening of Aluminum Alloy 2219 by Thermo-Mechanical Treatment, J. Mater. Eng. Perform., 2015, 24, p 3905–3911

    Article  Google Scholar 

  26. X. Li, S. Wang, S. Zhao, W. Ding, J. Chen, and G. Wu, Effect of Pulse Current on the Tensile Deformation of SUS304 Stainless Steel, J. Mater. Eng. Perform., 2015, 24, p 5065–5070

    Article  Google Scholar 

  27. U. Bathini, T.S. Srivatsan, A. Patnaik, and T. Quick, A Study of the Tensile Deformation and Fracture Behavior of Commercially Pure Titanium and Titanium Alloy: Influence of Orientation and Microstructure, J. Mater. Eng. Perform., 2010, 19, p 1172–1182

    Article  Google Scholar 

  28. I. Sabirov, R.Z. Valiev, I.P. Semenova, and R. Pippan, Effect of Equal Channel Angular Pressing on the Fracture Behavior of Commercially Pure Titanium, Metall. Mater. Trans. A, 2010, 41A, p 727–733

    Article  Google Scholar 

  29. E. Altstadt, M. Serrano, M. Houska, and A. Garcia-Junceda, Effect of anisotropic microstructure of a 12Cr-ODS steel on the fracture behaviour in the small punch test, Mater. Sci. Eng. A Struct., 2016, 654, p 309–316

    Article  Google Scholar 

  30. C.W. Tan, L.Q. Li, Y.B. Chen, C.X. Mei, and W. Guo, Interfacial Microstructure and Fracture Behavior of Laser Welded-Brazed Mg Alloys to Zn-Coated Steel, Int. J. Adv. Manuf. Technol., 2013, 68, p 1179–1188

    Article  Google Scholar 

  31. L. Li, Z. Zhang, and G. Shen, The Effect of Grain Size on Fatigue Crack Propagation in Commercial Pure Titanium Investigated by Acoustic Emission, J. Mater. Eng. Perform., 2015, 24, p 2720–2729

    Article  Google Scholar 

  32. W. Jiang, X. Chen, B. Wang, Z. Fan, and H. Wu, Effects of Vibration Frequency on Microstructure, Mechanical Properties, and Fracture Behavior of A356 Aluminum Alloy Obtained by Expendable Pattern Shell Casting, Int. J. Adv. Manuf. Technol., 2016, 83, p 167–175

    Article  Google Scholar 

  33. M.A. Meyers, A. Mishra, and D.J. Benson, The Deformation Physics of Nanocrystalline Metals: Experiments, Analysis, and Computations, JOM, 2006, 58, p 41–48

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the financial support from the National Science Foundation of China (Nos. 51675125 and 51675126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Zhen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daming, N., Zhen, L. & Kaifeng, Z. Grain Size Effect of Commercial Pure Titanium Foils on Mechanical Properties, Fracture Behaviors and Constitutive Models. J. of Materi Eng and Perform 26, 1283–1292 (2017). https://doi.org/10.1007/s11665-017-2559-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2559-0

Keywords

Navigation