Skip to main content

Advertisement

Log in

High-temperature Tensile Properties and Creep Life Assessment of 25Cr35NiNb Micro-alloyed Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Reformer tubes in petrochemical industries are exposed to high temperatures and gas pressure for prolonged period. Exposure of these tubes at severe operating conditions results in change in the microstructure and degradation of mechanical properties which may lead to premature failure. The present work highlights the high-temperature tensile properties and remaining creep life prediction using Larson-Miller parametric technique of service exposed 25Cr35NiNb micro-alloyed reformer tube. Young’s modulus, yield strength, and ultimate tensile strength of the steel are lower than the virgin material and decreases with the increase in temperature. Ductility continuously increases with the increase in temperature up to 1000 °C. Strain hardening exponent increases up to 600 °C, beyond which it starts decreasing. The tensile properties are discussed with reference to microstructure and fractographs. Based on Larson-Miller technique, a creep life of at least 8.3 years is predicted for the service exposed material at 800 °C and 5 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.W. Briggs, Steel Castings Handbook, 4th ed., Steel Founders’ Society of America, Crystal Lake, 1970

    Google Scholar 

  2. A. Alvino, D. Lega, F. Giacobbe, V. Mazzocchi, and A. Rinaldi, Damage Characterization in Two Reformer Heater Tubes After Nearly 10 Years of Service at Different Operative and Maintenance Conditions, Eng. Fail. Anal., 2010, 17, p 1526–1541

    Article  Google Scholar 

  3. T.C. Chou, W. Huang, and R. Paciej, Stress Corrosion Cracking of Pyrotherm Reformer Tube for Steam-Reforming Hydrogen Production, J. Mater. Sci., 1997, 32, p 67–72

    Article  Google Scholar 

  4. J.M. Joubert, W. St-Fleur, J. Sarthou, A. Steckmeyer, and B. Fournier, Equilibrium Characterization and Thermodynamic Calculations on Highly Alloyed Refractory Steels, Calphad, 2014, 46, p 55–61

    Article  Google Scholar 

  5. C.J. Liu and Y. Chen, Variations of the Microstructure and Mechanical Properties of HP40Nb Hydrogen Reformer Tube with Time at Elevated Temperature, Mater. Des., 2011, 32, p 2507–2512

    Article  Google Scholar 

  6. L.T. Li, Y.C. Lin, H.M. Zhou, Y.C. Xia, and Y.Q. Jiang, Modeling the High-Temperature Creep Behaviors of 7075 and 2124 Aluminum Alloys by Continuum Damage Mechanics Model, Comput. Mater. Sci., 2013, 73, p 72–78

    Article  Google Scholar 

  7. A. Ghatak and P.S. Robi, A Comparative Study of Constitutive Equations for the Creep Deformation of HP40Nb Micro-alloyed Steel, Mater. Sci. Eng. A, 2015, 648, p 418–427

    Article  Google Scholar 

  8. A. Ghatak and P.S. Robi, High-Temperature Deformation Behavior of HP40Nb Micro-alloyed Reformer Steel, Metallogr. Microstruct. Anal., 2015, 4, p 508–517

    Article  Google Scholar 

  9. Y.C. Lin, Y.Q. Jiang, H.M. Zhou, and G. Liu, A New Creep Constitutive Model for 7075 Aluminium Alloy Under Elevated Temperatures, J. Mater. Eng. Perform., 2014, 23, p 4350–4357

    Article  Google Scholar 

  10. F.R. Larson and J. Miller, A Time-temperature Relationship for Rupture and Creep Stresses, Trans. ASME, 1952, 74, p 765–771

    Google Scholar 

  11. J. Dong, K. Shin, K.C. Kim, and B.H. Kim, Precipitates in 9-12% Cr Steel After Creep Rupture Test and Determination of Life Time Assessment upon Larson-Miller Parameter, Adv. Sci. Lett., 2011, 4, p 2555–2559

    Article  Google Scholar 

  12. A.H.D. Sorkhabi and F.V. Tahami, Creep Constitutive Equation for 2-Materials of Weldment-304L Stainless Steel, World Acad. Sci. Eng. Technol., 2012, 61, p 710–714

    Google Scholar 

  13. A.K. Ray, K. Diwakar, B.N. Prasad, Y.N. Tiwari, R.N. Ghosh, and J.D. Whittenberger, Long Term Creep-rupture Behaviour of 813 K Exposed 2.25-1Mo Steel Between 773 and 873 K, Mater. Sci. Eng. A, 2007, 454–455, p 124–131

    Article  Google Scholar 

  14. J.E. Indacochea and R.A. Seshadri, An Analysis of Creep Damage in a Welded Low Alloy Steel Rotor, Mater. Sci. Eng. A, 1997, 234–236, p 555–558

    Article  Google Scholar 

  15. A.K. Ray, S. Kumar, G. Krishna, M. Gunjan, B. Goswami, and S.C. Bose, Microstructural Studies and Remnant Life Assessment of Eleven Years Service Exposed Reformer Tube, Mater. Sci. Eng. A, 2011, 529, p 102–112

    Article  Google Scholar 

  16. J. Swaminathan, K. Guguloth, M. Gunjan, P. Roy, and R. Ghosh, Failure Analysis and Remaining Life Assessment of Service Exposed Primary Reformer Heater Tubes, Eng. Fail. Anal., 2008, 15, p 311–331

    Article  Google Scholar 

  17. E. Hamzah, M. Mudang, A.K. Jenq, and M.A. Khattak, High Temperature Creep Behavior of Austenitic Fe-Ni-Cr alloy, Adv. Mater. Res., 2013, 686, p 170–179

    Article  Google Scholar 

  18. A.K. Ray, S.K. Sinha, Y.N. Tiwari, J. Swaminathan, G. Das, S. Chaudhuri, and R. Singh, Analysis of Failed Reformer Tubes, Eng. Fail. Anal., 2003, 10, p 351–362

    Article  Google Scholar 

  19. ASTM E8M-04, Standard Test Methods for Tension Testing of Metallic Materials (metric) (Annual Book of ASTM Standards), ASTM, West Conshohocken, 2004

  20. S. Surendarnath, K. Sankaranarayanasamy, and B. Ravisankar, Workability Study on 99.04% Pure Aluminium Processed by ECAP, Mater. Manuf. Process., 2014, 29, p 691–696

    Article  Google Scholar 

  21. J. Luo and M.Q. Li, Strain Rate Sensitivity and Strain Hardening Exponent During the Isothermal Compression of Ti60 Alloy, Mater. Sci. Eng. A, 2012, 538, p 156–163

    Article  Google Scholar 

  22. J. Deng, Y.C. Lin, J. Chen, S.S. Li, and Y. Ding, Hot Tensile Deformation and Fracture Behaviors of AZ31 Magnesium Alloy, Mater. Des., 2013, 49, p 209–219

    Article  Google Scholar 

  23. ASTM 139, Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials, ASTM, West Conshohocken, 2003

  24. A. Ghatak and P.S. Robi, Investigation of Micro-structure and Creep Life Analysis of Centrifugally Cast Fe-Cr-Ni Alloy Reformer Tubes, Manuf. Sci. Technol., 2015, 3, p 155–159

    Google Scholar 

  25. A. Ghatak and P.S. Robi, Creep behavior and creep life assessment of HP40Nb reformer steel, Int. J. Res. Eng. Appl. Sci., 2015, 5, p 98–105

    Google Scholar 

  26. R.K. Bansal, A Textbook of Strength of Materials, 4th ed., Laxmi Publications (P) Ltd., New Delhi, 2010, p 749

    Google Scholar 

  27. H39WM, 25/35 Cr/Ni Nb 0.4% C Microalloy Cast Heat Resisting Alloy, Physical Properties, Doncasters Paralloy Ltd, Billingham, 2013

  28. A.K. Jena and M.C. Chaturvedi, The Role of Alloying Elements in the Design of Nickel-Base Superalloys, J. Mater. Sci., 1984, 19, p 3121–3139

    Article  Google Scholar 

  29. A. Ghatak and P.S. Robi, Effect of Temperature on the Microstructure and Hardness of Service Exposed 25Cr35NiNb Reformer Tubes, Trans. Indian Inst. Met., 2016, 69, p 823–827

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Numaligarh Refineries Limited, India for providing the reformer tube necessary for the work. The authors are also grateful to Central Instruments Facility, IIT Guwahati, India for extending the SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Ghatak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghatak, A., Robi, P.S. High-temperature Tensile Properties and Creep Life Assessment of 25Cr35NiNb Micro-alloyed Steel. J. of Materi Eng and Perform 25, 2000–2007 (2016). https://doi.org/10.1007/s11665-016-2016-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2016-5

Keywords

Navigation