Skip to main content

Advertisement

Log in

Parametric Modeling of Welding Processes Using Numerical-Analytical Basis Functions and Equivalent Source Distributions

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A general methodology for inverse thermal analysis of steady-state energy deposition in plate structures, typically welds, is extended with respect to its formulation. This methodology is in terms of numerical-analytical basis functions, which provide parametric representations of weld-temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations and mechanical response. The extension of the methodology presented here concerns construction of numerical-analytical basis functions and their associated parameterizations, which permit optimal and convenient parameter optimization with respect to different types of weld-workpiece boundary conditions, energy source characteristics, and experimental measurements adoptable as weld-temperature history constraints. Prototype inverse thermal analyses of a steel weld are presented that provide proof of concept for inverse thermal analysis using these basis functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, PA, 2005

    Book  Google Scholar 

  2. C.R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, PA, 2002

    Book  Google Scholar 

  3. A.G. Ramm, Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering, Springer Science, New York, 2005

    Google Scholar 

  4. J.V. Beck and K.J. Arnold, Parameter Estimation in Engineering and Science, Wiley Interscience, New York, 1977

    Google Scholar 

  5. J.V. Beck, B. Blackwell, and C.R. St. Clair, Inverse Heat Conduction: IlI-Posed Problems, Wiley Interscience, New York, 1995

    Google Scholar 

  6. O.M. Alifanov and A.P. Tryanin, Determination of the Coefficient of Internal Heat Exchange and the Effective Thermal Conductivity of II, Porous Solid on the Basis of a Nonstationary Experiment, J. Eng. Phys., 1985, 8(3), p 356–365

    Article  Google Scholar 

  7. E.A. Artyukhin, Iterative Algorithms for Estimating Temperature Dependent Thermophysical Characteristics, 1st International Conference on Inverse Problems in Engineering, Proceedings, Palm Coast, FI, 1993, p 101-1011

  8. L. Dantas and H.R.B. Orlande, A Function Estimation Approach for Determining Temperature-Dependent Thermophysical Properties, Inverse Probl. Eng., 1996, 3, p 261–279

    Article  Google Scholar 

  9. T.J. Martin, G.S. Dulikravich, Non-iterative Inverse Determination of Temperature-Dependent Heat Conductivities, HTD-Vol 340 ASME National Heat Transfer Conference, G.S. Dulikravich, K. Woodburry, Ed., Vol 2, 1997, p 141-150

  10. M.M. Mejias, H.R.B. Orlande, and M.N. Ozisik, Design of Optimum Experiments for the Estimation of Thermal Conductivity Components of Orthotropic Solids, Hybrid Methods Eng., 1999, 1, p 37–53

    Google Scholar 

  11. A.J. Silva Neto, M.N. Ozisik, An Inverse Analysis of Simultaneously Estimating Phase Function, Albedo and Optical Thickness, ASME/AIChe Conference, San Diego, CA, August 9-12, 1992

  12. J.C. Bokar and M.N. Ozisik, An Inverse Problem for the Estimation of Radiation Temperature Source Term in a Sphere, Inverse Probl. Eng., 1995, 1, p 191–205

    Article  Google Scholar 

  13. N. Ruperti, Jr., M. Raynaud, and J.F. Sacadura, A Method for the Solution of the Coupled Inverse Heat Conduction-Radiation Problems, ASME J. Heat Transf., 1996, 118, p 10–17

    Article  Google Scholar 

  14. C.H. Huang and M.N. Ozisik, Inverse Problem of Determining Unknown Wall Heat Flux in Laminar Flow Through a Parallel Plate Duct, Numer. Heat Transf. Part A, 1992, 21, p 55–70

    Article  Google Scholar 

  15. H.A. Machado and H.R.B. Orlande, Inverse Analysis of Estimating the Timewise and Spacewise Variation of the Wall Heat Flux in a Parallel Plate Channel, Int. J. Numer. Meth. Heat Fluid Flow, 1997, 7, p 696–710

    Article  Google Scholar 

  16. J.C. Bokar and M.N. Ozisik, An Inverse Analysis for Estimating Time Varying Inlet Temperature in Laminar Flow Inside a Parallel Plate Duct, Int. J. Heat Mass Transf., 1995, 38, p 39–45

    Article  Google Scholar 

  17. H.A. Machado, H.R.B Orlande, Estimation of the Timewise and Spacewise Variation of the Wall Heat Flux to a Non-Newtonian Fluid in a Parallel Plate Channel, International Symposium on Transient Convective Heat Transfer, Proceedings, J. Padet, Ed., Turkey, 1996, p 587-596

  18. H.A. Machado and H.R.B. Orlande, Inverse Problem of Estimating the Heat Flux to a Non-Newtonian Fluid in a Parallel Plate Channel, RBCM J. Braz. Soc. Mech. Sci., 1998, 2, p 51–61

    Google Scholar 

  19. C.H. Huang, M.N. Ozisik, and B. Sawaf, Conjugate Gradient Method for Determining Unknown Contact Conductance During Metal Casting, Int. J. Heat Mass Transf., 1992, 35, p 1779–1789

    Article  Google Scholar 

  20. M.N. Ozisik, H.R.B. OrIande, L.G. Hector, and P.N. Anyalebechi, Inverse Problem of Estimating Interface Conductance During Solidification via Conjugate Gradient Method, J. Mater. Proc. Manuf. Sci., 1992, 1, p 213–225

    Google Scholar 

  21. O.M. Alifanov, Inverse Heat Transfer Problems, Springer, New York, 1994

    Book  Google Scholar 

  22. H.R.B. Orlande and M.N. Ozisik, Determination of the Reaction Function in a Reaction-Diffusion Parabolic Problem, J. Heat Transf., 1994, 116, p 1041–1044

    Article  Google Scholar 

  23. J.S. Brium, D. Delaunay, B. Gamier, and Y. Jamy, Implementation of an Inverse Method for Identification of Reticulation Kinetics from Temperature Measurements on a Thick Sample, Int. J. Heat Mass Transf., 1993, 36, p 4039–4097

    Article  Google Scholar 

  24. C.H. Huang, C.C. Tsai, A Shape Identification Problem in Time Dependent Irregular Boundary Configurations, HTD. Vol 340 ASME National Heat Transfer Conference, G.S. Dulikravich, K. Woodburry, Ed., Vol 2, 1997, p 41-48

  25. C.H. Huang and C.C. Chiang, Shape Identification Problem in Estimating Geometry of Multiple Cavities, AIAA J. Therm. Heat Transf., 1998, 12, p 270–277

    Article  Google Scholar 

  26. G.S. Dulikravich and T.J. Manin, Inverse Shape and Boundary Condition Problems and Optimization in Heat Conduction, Chapter 10 in Advances in Numerical Heat Transfer, Vol 1, W.J. Minkowycz and E.M. Sparrow, Ed., Taylor and Francis, Washington, 1996, p 381–426

    Google Scholar 

  27. N. Zabaras and T.H. Ngugcn, Control of the Freezing Interface Morphology in Solidification Processes in the Presence of Natural Convection, Int. J. Numer. Methods Eng., 1995, 38, p 1555–1578

    Article  Google Scholar 

  28. N. Zabaras and G. Yang, A Functional Optimization Formulation and Implementation of an Inverse Natural Convection Problem, Comput. Methods Appl. Mech. Eng., 1997, 144, p 245–274

    Article  Google Scholar 

  29. G. Yang and N. Zabaras, An Adjoint Method for the Inverse Design of Solidification Processes with Natural Convection, Int. J. Num Meth. Eng., 1998, 42, p 1121–1144

    Article  Google Scholar 

  30. L. Bailleul, D. Delaunay, Y. Jamy, Optimal Thermal Processing of Composite Materials: An Inverse Algorithm and Its Experimental Validation, 11th International Heat Transfer Conference, Vol 5, Kyngju, Korea, 1998, p 87-92

  31. Y. Jamy, D. Delaunay, J.S. Brizaut, Inverse Analysis of the Elastomer Cure Control of the Vulcanization Degree, 1st International Conference on Inverse Problems in Engineering, Proceedings, Palm Coast, FI, 1993, p 291-298

  32. M.N. Ozisik and H.R.B. Orlande, Inverse Heat Transfer, Fundamentals and Applications, Taylor and Francis, New York, 2000

    Google Scholar 

  33. K. Kurpisz and A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Boston, 1995

    Google Scholar 

  34. O.M. Alifanov, Inverse Heat Transfer Problems, Springer, Berlin, 1994

    Book  Google Scholar 

  35. J.V. Beck, B. Blackwell, and C.R. St. Clair, Inverse Heat Conduction: Ill-Posed Problems, Wiley Interscience, New York, 1985

    Google Scholar 

  36. J.V. Beck, Inverse Problems in Heat Transfer with Application to Solidification and Welding, Modeling of Casting, Welding and Advanced Solidification Processes, V.M. Rappaz, M.R. Ozgu, and K.W. Mahin, Ed., The Minerals, Metals and Materials Society, Warrendale, 1991, p 427–437

    Google Scholar 

  37. J.V. Beck, Inverse Problems in Heat Transfer, Mathematics of Heat Transfer, G.E. Tupholme and A.S. Wood, Ed., Clarendon Press, Oxford, 1998, p 13–24

    Google Scholar 

  38. M.N. Ozisik, Heat Conduction. Chapter 14, Wiley, New York, 1994

    Google Scholar 

  39. M.N. Ozisik, Boundary Value Problems of Heat Conduction, Dover, New York, 1989

    Google Scholar 

  40. O.M. Alifanov, Determination of Heat Loads from a Solution of the Nonlinear Inverse Problem, High Temp., 1977, 15(3), p 498–504

    Google Scholar 

  41. A.N. Tikhonov, Inverse Problems in Heat Conduction, J. Eng. Phys., 1975, 29(1), p 816–820

    Article  Google Scholar 

  42. O.M. Alifanov, Solution of an Inverse Problem of Heat-Conduction by Iterative Methods, J. Eng. Phys., 1974, 26(4), p 471–476

    Article  Google Scholar 

  43. O.M. Alifanov and N.Y. Kerov, Determination of External Thermal Load Parameters by Solving the Two-Dimensional Inverse Heat-Conduction Problem, J. Eng. Phys., 1981, 41(4), p 1049–1053

    Article  Google Scholar 

  44. O.M. Alifanov and V.V. Miklhailov, Solution of the Nonlinear Inverse Thermal Conductivity Problem by the Iteration Method, J. Eng. Phys., 1978, 35(6), p 1501–1506

    Article  Google Scholar 

  45. O.M. Alifanov and V.Y. Mikhailov, Determining Thermal Loads from the Data of Temperature Measurements in a Solid, High Temp., 1983, 21(5), p 724–730

    Google Scholar 

  46. O.M. Alifanov and V.Y. Mikhailov, Solution of the Overdetermined Inverse Problem of Thermal Conductivity Involving Inaccurate Data, High Temp., 1985, 23(1), p 112–117

    Google Scholar 

  47. O.M. Alifanov and A. Rumyantsev, Regularizing Gradient Algorithms for Inverse Thermal-Conduction Problems, J. Eng. Phys., 1980, 39(2), p 858–861

    Google Scholar 

  48. O.M. Alifanov, E. Artyukhin, and A. Rumyantsev, Extreme Methods for Solving Ill-Posed Problems with Applications to Inverse Heat Transfer Problems, Begell House, New York, 1995

    Google Scholar 

  49. D.A. Murio, The Modification Method and the Numerical Solution of an Inverse Heat Conduction Problem, SIAM J. Sci. Stat. Comput., 1981, 2, p 17–34

    Article  Google Scholar 

  50. E.M. Sparrow, A. Haji-Sheikh, and T.S. Lundgren, The Inverse Problem in Transient Heat Conduction, J. Appl. Mech., 1964, 86E, p 369–375

    Article  Google Scholar 

  51. M. Imber and J. Khan, Prediction of Transient Temperature Distributions with Embedded Thermocouples, AIAA J., 1972, 10, p 784–789

    Article  Google Scholar 

  52. M. Imber, Two-Dimensional Inverse Conduction Problem, Further Observations, AIAA J., 1975, 13, p 114–115

    Article  Google Scholar 

  53. K.C. Woo and L.C. Chow, Inverse Heat Conduction by Direct Inverse Laplace Transform, Numer. Heat Transf., 1981, 4, p 499–504

    Google Scholar 

  54. C.F. Weber, Analysis and Solution of the Ill-Posed Inverse Heat Conduction Problem, Int. J. Heat Mass Transf., 1981, 24, p 1783–1792

    Article  Google Scholar 

  55. J.V. Beck, Nonlinear Estimation Applied to the Nonlinear Inverse Heat Conduction Problem, Int. J. Heat Mass Transf., 1970, 13, p 703–716

    Article  Google Scholar 

  56. N. D’Souza, Numerical Solution of One-Dimensional Inverse Transient Heat Conduction by Finite Difference Method, ASME Paper No. 75WAlHT-81, 1975

  57. L. Garifo, V.E. Schrock, and E. Spedicato, On the Solution of the Inverse Heat Conduction Problem by Finite Differences, Energia Nucl., 1975, 22, p 452–464

    Google Scholar 

  58. B.R. Bass and L.J. Ott, A Finite Element Formulation of the Two-Dimensional Nonlinear Inverse Heat Conduction Problem, Adv. Comput. Technol., 1980, 2, p 238–248

    Google Scholar 

  59. D.A. Murio, The Mollification Method and the Numerical Solution of the Inverse Heat Conduction Problem by Finite Difference, Comput. Math Appl., 1896, 17(1385), p 1989

    Google Scholar 

  60. Y. Jarny, M.N. Ozisik, and J.P. Bardon, A General Optimization Method Using Adjoint Equation for Solving Multidimensional inverse Heat Conduction, Int. J. Heat Mass Transf., 1991, 34, p 2911–2929

    Article  Google Scholar 

  61. H.Y. Li and M.N. Ozisik, Identification of the Temperature Profile in an Absorbing, Emitting, and Isotropically Scattering Medium by Inverse Analysis, J. Heat Transf., 1992, 114, p 1060–1063

    Article  Google Scholar 

  62. C.H. Ho and M.N. Ozisik, An Inverse Radiation Problem, Int. J. Heat Mass Transf., 1989, 32, p 335–341

    Article  Google Scholar 

  63. B.G. Abnlmovich and V.S. Trofunov, Integral Form of the Inverse Heat Conduction Problem for a Hollow Cylinder, High Temp. (USSR), 1979, 17, p 552–554

    Google Scholar 

  64. C.H. Ho and M.N. Ozisik, Inverse Radiation Problem in Inhomogeneous Media, J Quant. Spectrosc. Radiat. Transf., 1988, 40, p 553–560

    Article  Google Scholar 

  65. H.R.B. Orlande, M.N. Ozisik, Inverse Problems Computations in Heat and Mass Transfer, International Conf. on Comput. Heat and Mass Transfer, Keynote lecture, North Cyprus, April, 1999

  66. E.A. Artyukhin and A.V. Nenarokomov, Coefficient Inverse Heat Conduction Problem, J. Eng. Phys., 1988, 53, p 1085–1090

    Article  Google Scholar 

  67. O.M. Alifanov and M.Y. Klibanov, Uniqueness Conditions and Method of Solution of the Coefficient Inverse Problem of Thermal Conductivity, J. Eng. Phys., 1985, 48(6), p 730–735

    Article  Google Scholar 

  68. E.A. Artyukhin, Reconstruction of the Thermal Conductivity Coefficient from the Solution of the Nonlinear Inverse Problem, J. Eng. Phys., 1981, 41(4), p 1054–1058

    Article  Google Scholar 

  69. J.V. Beck, Calculation of Surface Heat Flux from an Internal Temperature History, ASME Paper 61-HT-46, 1962

  70. J.V. Beck, Surface Heat Flux Determination Using an Integral Method, Nucl. Eng. Des., 1968, 7, p 170–178

    Article  Google Scholar 

  71. A.M. Osman, K.J. Dowding, and J.V. Beck, Numerical Solution of the General Two-dimensional Inverse Heat Conduction Problem, ASME J. Heat Transf., 1997, 119, p 38–44

    Article  Google Scholar 

  72. C.J. Chen, D.M. Thomsen, On Determination of Transient Surface Temperature and Heat Flux by Imbedded Thermocouple in a Hollow Cylinder, Tech. Rept., Rock Island Arsenal, Rock Island, IU, March 1974

  73. H.Y. Li and M.N. Ozisik, Inverse Radiation Problem for Simultaneous Estimation of Temperature Profile and Surface Reflectivity, J. Thermophys. Heat Transf., 1993, 7, p 88–93

    Article  Google Scholar 

  74. H.Y. Li and M.N. Ozisik, Estimation of the Radiation Source Term with a Conjugate-Gradient Method of Inverse Analysis, J. Quant. Spectrosc. Radiat. Transf., 1992, 48, p 237–244

    Article  Google Scholar 

  75. H.R.B. Orlande and M.N. Ozisik, Inverse Problem of Estimating Interface Conductance Between Periodically Conducting Surfaces, J. Thermophys. Heat Transf., 1993, 7, p 319–325

    Article  Google Scholar 

  76. J.V. Beck, Criteria for Comparison of Methods of Solution of the Inverse Heat Conduction Problems, Nucl. Eng. Des., 1979, 53, p 11–22

    Article  Google Scholar 

  77. D. Lesnic, I. Elliot, and O.B. Ingham, Application of the Boundary Element Method to Inverse Heat Conduction Problems, Int. J. Heat Mass Transf., 1996, 39, p 1503–1517

    Article  Google Scholar 

  78. T.J. Martin and G.S. Dulikravich, Inverse Determination of Steady Convective Local Heat Transfer Coefficients, ASME J. Heat Transf., 1998, 120, p 328–334

    Article  Google Scholar 

  79. T.J. Martin and G.S. Dulikravich, Inverse Determination of Boundary Conditions in Steady Heat Conduction with Heat Generation, ASME J. Heat Transf., 1996, 118, p 546–554

    Article  Google Scholar 

  80. C.H. Huang and M.N. Ozisik, Optimal Regularization Method to Determine the Strength of a Plane Surface Heat Source, Int. J. Heat Fluid Flow, 1991, 12, p 173–178

    Article  Google Scholar 

  81. S.G. Lambrakos and S.G. Michopoulos, Algorithms for Inverse Analysis of Heat Deposition Processes, Mathematical Modelling of Weld Phenomena, Vol 8, Verlag der Technischen Universite Graz, Graz, 2007, p 847

    Google Scholar 

  82. S.G. Lambrakos and J.O. Milewski, Analysis of Welding and Heat Deposition Processes using an Inverse-Problem Approach, Mathematical Modelling of Weld Phenomena, Vol 7, Verlag der Technischen Universite Graz, Graz, 2005, p 1025–1055

    Google Scholar 

  83. E.A. Metzbower, D.W. Moon, C.R. Feng, S.G. Lambrakos, and R.J. Wong, Modelling of HSLA-65 GMAW Welds, Mathematical Modelling of Weld Phenomena, Vol 7, Verlag der Technischen Universite Graz, Graz, 2005, p 327–339

    Google Scholar 

  84. S.G. Lambrakos, Inverse Thermal Analysis of 304L Stainless Steel Laser Welds, J. Mater. Eng. Perform., 2013, 22(8), p 2141

    Google Scholar 

  85. S.G. Lambrakos, Inverse Thermal Analysis of Stainless Steel Deep-Penetration Welds Using Volumetric Constraints, J. Mater. Eng. Perform., 2014, 23(6), p 2219–2232. doi:10.1007/s11665-014-1023-7

    Article  Google Scholar 

  86. S.G. Lambrakos, Inverse Thermal Analysis of Welds Using Multiple Constraints and Relaxed Parameter Optimization, J. Mater. Eng. Perform., August 2015, 24(8), p 2925–2936

    Article  Google Scholar 

  87. S.G. Lambrakos, A. Shabaev, and L. Huang, Inverse Thermal Analysis of Titanium GTA Welds Using Multiple Constraints, J. Mater. Eng. Perform., 2015, 24(6), p 2401–2411. doi:10.1007/s11665-015-1511-4

    Article  Google Scholar 

  88. S.G. Lambrakos, A. Shabaev, Temperature Histories of Ti-6Al-4 V Pulsed-Mode Laser Welds Calculated Using Multiple Constraints, Naval Research Laboratory Memorandum Report, Naval Research Laboratory, Washington, DC, NRL/MR/6390-15-9621, August 12, 2015

  89. E.W. Reutzel, S.M. Kelly, R.P. Martukanitz, M.M. Bugarewicz, P. Michaleris, Laser-GMA Hybrid Welding: Process Monitoring and Thermal Modeling, Trends in Welding Research, Proceedings of the 7th International Conference, S.A. David, T. DebRoy, J.C. Lippold, H.B. Smartt, J.M. Vitek, Eds., ASM International, 2006, p 143-148

  90. J.G. Michopoulos, S.G. Lambrakos, On the Fundamental Tautology of Validating Data-Driven Models and Simulations, Simulation of Multiphysics Multiscale Systems, International Conference on Computational Science, Vol 2, 2005, p 738-745

  91. D. Rosenthal, The Theory of Moving Sources of Heat and Its Application to Metal Treatments, Trans ASME, 1946, 68, p 849–866

    Google Scholar 

  92. J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Source, Metall. Trans. B, 1984, 15, p 299–305

    Article  Google Scholar 

  93. O. Grong, Materials Modelling Series, Metallurgical Modelling of Welding, Chapter 2, 2nd ed., H.K.D.H. Bhadeshia, Ed., The Institute of Materials, London, 1997, p 1–115

    Google Scholar 

  94. R.O. Myhr and O. Grong, Dimensionless Maps for Heat Flow Analyses in Fusion Welding, Acta Metall. Mater., 1990, 38, p 449–460

    Article  Google Scholar 

  95. R.C. Reed and H.K.D.H. Bhadeshia, A Simple Model For Multipass Welds, Acta Metall. Mater., 1994, 42(11), p 3663–3678

    Article  Google Scholar 

  96. V.A. Karkhin, P.N. Homich, and V.G. Michailov, Models for Volume Heat Sources and Functional-Analytic Technique for Calculating the Temperature Fields in Butt Welding, Mathematical Modelling of Weld Phenomena, Vol 8, Verlag der Technischen Universite Graz, Graz, 2007, p 847

    Google Scholar 

  97. A.A. Deshpande, A. Short, W. Sun, D.G. McCartney, L. Xu, and T.H. Hyde, Finite-Element Analysis of Experimentally Identified Parametric Envelopes for Stable Kethole Plasma Arc Welding of a Titanium Alloy, J. Strain Anal. Eng. Des., 2012, 47(5), p 266–275

    Article  Google Scholar 

  98. I.S. Leoveanu, G. Zgura, and D. Birsan, Modeling the Heat and Fluid Flow in the Welded Pool, Bull. Transsilv. Univ. Brasov, 2007, 3, p 363–368 (ISSN 1223-9631)

    Google Scholar 

  99. I.S. Leoveanu and G. Zgura, Modelling the Heat and Fluid Flow in the Welded Pool from High Power Arc Sources, Materials Science Forum, Vol 580-582, C. Lee, J.-B. Lee, D.-H. Park, and S.-J. Na, Ed., Trans Tech Publications, Dürnten, 2008, p 443–446

    Google Scholar 

  100. R.W. Farebrother, Linear-Least-Square Computations, Marcel Dekker, New York, 1988

    Google Scholar 

  101. Y.B. Bard, Nonlinear Parameter Estimation, Academic Press, New York, 1974

    Google Scholar 

  102. S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, California Technical Publishing, San Diego, CA, 1997

    Google Scholar 

  103. H.S. Carslaw and J.C. Jaegar, Conduction of Heat in Solids, 2nd ed., Clarendon Press, Oxford, 1959, p 374

    Google Scholar 

  104. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Sciences, Hemisphere Publishing Corporation, London, 1980

    Google Scholar 

  105. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in Fortran 77, The Art of Scientific Computing, Vol 1, 2nd ed., Fortran Numerical Recipes Cambridge University Press, New York, 1997

    Google Scholar 

  106. S. Kou, Welding Metallurgy, 2nd ed., Wiley, Hoboken, 2003, doi:10.1002/0471434027

    Google Scholar 

  107. B. Smith, P. Bjorstad, and W. Gropp, Domain Decomposition, Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, Cambridge, 2004

    Google Scholar 

  108. A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 1999

    Google Scholar 

  109. A. Toselli and O. Widlund, Domain Decomposition Methods-Algorithms and Theory, Springer Series in Computational Mathematics Springer, New York, 2005

    Book  Google Scholar 

Download references

Acknowledgment

This work was supported by a Naval Research Laboratory (NRL) internal core program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Lambrakos.

Appendix

Appendix

T :

Temperature of workpiece

T A :

Ambient temperature of workpiece

\(T_{n}^{c}\) :

Constraint condition on temperature field

T M :

Melting temperature

T HE :

Temperature of HAZ-edge as measured (using thermocouples)

κ:

Thermal diffusivity

V :

Welding speed

l 1 :

Thickness of workpiece

l 2 :

Transverse-length parameter or tranverse length of workpiece

l 3 :

Longitudinal-length parameter or longitudinal length of workpiece

\(C\left( {\hat{x}_{k} } \right)\) :

Volumetric source function

Δt :

Time step for specifying average energy deposited during the time Δt

l S :

Length parameter specifying local region of temperature field to be calculated

Δl :

Spatial discretization of the temperature field with respect to l S

Z T :

Value of objective function

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambrakos, S.G. Parametric Modeling of Welding Processes Using Numerical-Analytical Basis Functions and Equivalent Source Distributions. J. of Materi Eng and Perform 25, 1360–1375 (2016). https://doi.org/10.1007/s11665-016-1970-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1970-2

Keywords

Navigation