Skip to main content
Log in

Experimental-based methodology for the double ellipsoidal heat source parameters in welding simulations

  • Review Paper
  • Published:
Marine Systems & Ocean Technology Aims and scope Submit manuscript

Abstract

The welding numerical simulation involves thermal and mechanical analyses and metallurgical consideration. The thermal analysis determines the transient temperature distribution on the welded part, and its accuracy is relevant for the following analyses on structural integrity, in particular buckling and fatigue failure modes of steel-plated structures. The temperature distribution is strongly influenced by the size and shape of the heat source, which can be represented as a double ellipsoid and defined by Goldak’s parameters. The main difficulty is that the adjustment of these parameters to obtain a suitable temperature distribution is usually determined by trial and error. In this paper, a parametric study is performed to analyze the influence of Goldak’s parameters on the weld bead size for 2D and 3D numerical welding simulations. A method to estimate the parameters of a double ellipsoidal heat source in motion is proposed. An algorithm has been implemented based on the combination of analytical formulation, experimental data, and numerical simulation. As an analytical formulation, the Fachinotti’s solution is used to determine the isotherms. The weld bead dimensions are defined from the melting temperature isotherm of the material. Experimental data, such as the welding process parameters and the weld bead dimensions are input to the algorithm. Numerical simulations of the welding process have been developed to calibrate and validate the method. The numerical simulation results from the obtained Goldak’s parameters by the proposed method are correlated with the experimental results of fillet-welded specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. I.W. Han, Y.H. Park, G.B. An, Y.H. An, Development trends of steel plates for ship building and off-shore construction and it’s weldability. J. Korean Weld. Join. Soc. 27(1), 25–33 (2009)

    Google Scholar 

  2. A.S. Aloraier, S. Joshi, Residual stresses in flux cored arc welding process in bead-on-plate specimens. Mater. Sci. Eng. A 534, 13–21 (2012)

    Article  Google Scholar 

  3. G. Fu, M.I. Lourenço, D. Menglan, S.F. Estefen, Effect of boundary conditions on residual stress and distortion in T-joint welds. J. Constr. Steel Res. 102, 121–135 (2014)

    Article  Google Scholar 

  4. G. Fu, T. Gurova, M.I. Lourenço, S.F. Estefen, Numerical and studies of residual stresses in multipass welding of high strength shipbuilding steel. J. Ship Res. 59(3), 1–12 (2015)

    Article  Google Scholar 

  5. G. Fu, S.F. Estefen, T. Gurova, M.I. Lourenço, Effect of material model on residual stress and distortion in T-joint welding. Ships Offshore Struct. 13(1), 56–64 (2018)

    Article  Google Scholar 

  6. J. Mackerle, Finite element analysis and simulation welding: a bibliography (1976–1996). Model. Simul. Mater. Sci. Eng. 4, 501–553 (1996)

    Article  Google Scholar 

  7. Z. Feng, Processes and Mechanisms of Welding Residual Stress and Distortion, Woodhead Publishing Series in Welding and Other Joining Technologies, 1st edn. (Woodhead Publishing, Sawston, 2005)

    Book  Google Scholar 

  8. A. Anca, A. Cardona, J. Risso, V.D. Fachinotti, Finite element modeling of welding processes. Appl. Math. Model 35, 688–707 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. K.J. Song, Y.H. Wei, Z.B. Dong, R. Ma, X.H. Zhan, W.J. Zheng, K. Fang, Constitutive model coupled with mechanical effect of volume change and transformation induced plasticity during solid phase transformation for TA15 alloy welding. Appl. Math. Model. 39, 2064–2080 (2015)

    Article  MATH  Google Scholar 

  10. D. Rosenthal, Mathematical theory of heat distribution during welding and cutting. Weld. J. 20(5), 220–234 (1941)

    Google Scholar 

  11. J. Goldak, A. Chakravarti, M. Bibby, A new finite element model for welding heat sources. Metall. Trans. B 15(2), 299–305 (1984)

    Article  Google Scholar 

  12. A.M. Malik, E.M. Qureshi, N.U. Dar, I. Khan, Analysis of circumferentially arc welded thin-walled cylinders to investigate the residual stress fields. Thin Walled Struct. 46(2), 1391–1401 (2008)

    Article  Google Scholar 

  13. J.W. Price, A. Ziara-Paradowska, S. Joshi, T. Finlayson, C. Semetay, H. Nied, Comparison of experimental and theoretical residual stresses in welds: the issue of gauge volume. Int. J. Mech. Sci. 50(3), 513–521 (2008)

    Article  Google Scholar 

  14. F. Kong, J. Ma, R. Kovacevic, Numerical and experimental study of thermally induced residual stress in the hybrid laser welding process. J. Mater. Process. Technol. 211(6), 1102–1111 (2011)

    Article  Google Scholar 

  15. A. Anca, V.D. Fachinotti, G. Escobar-Palafox, A. Cardona, Computational modeling of shaped metal deposition. Int. J. Numer. Methods Eng. 85, 84–106 (2011)

    Article  MATH  Google Scholar 

  16. S. Bannour, K. Abderrazak, H. Mhiri, G. Le Palec, Effects of temperature dependent material properties and shielding gas on molten pool formation during continuous laser welding of AZ91 magnesium alloy. Opt. Laser Technol. 44(8), 2459–2468 (2012)

    Article  Google Scholar 

  17. E. Nart, Y. Celik, A practical approach for simulating submerged arc welding process using FE method. J. Constr. Steel Res. 84, 62–71 (2013)

    Article  Google Scholar 

  18. S. Joshi, J.G. Hildebrand, A.S. Aloraier, T. Rabczuk, Characterization of material properties and heat source parameters in welding simulation of two overlapping beads on substrate plate. Comput. Mater. Sci. 69, 559–565 (2013)

    Article  Google Scholar 

  19. W. Piekarska, M. Kubiak, Modelling of thermal phenomena in single laser beam and laser-arc hybrid welding processes using projection method. Appl. Math. Model. 37, 2051–2062 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. N.T. Nguyen, A. Ohta, K. Matsuoka, N. Suzuki, Y. Maeda, Analytical solutions for transient temperature of semi-infinite body subjected to 3-D moving heat sources. Welding Res. 78, 265–274 (1999)

    Google Scholar 

  21. N.T. Nguyen, Y.W. Mai, S. Simpson, A. Ohta, Analytical approximate solution for double ellipsoidal heat source in finite thick plate. Weld. J. 83, 82–93 (2004)

    Google Scholar 

  22. V.D. Fachinotti, A.A. Anca, A. Cardona, Analytical solutions of the thermal field induced by moving double-ellipsoidal and double elliptical heat sources in a semi-infinite body. Int. J. Numer. Biomed. Eng. 27, 595–607 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Song, J. Peters, A. Noor, P. Michaleris, Sensitivity analysis of the thermomechanical response of welded joints. Int. J. Solids Struct. 40(16), 4167–4180 (2003)

    Article  Google Scholar 

  24. D. Deng, FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects. Mater. Des. 30, 359–366 (2009)

    Article  Google Scholar 

  25. K.R. Bate, R. Charles, A. Warren, Finite element analysis of a single bead-on-plate specimen using SYSWELD. Int. J. Press. Vessels Pip. 86, 73–78 (2009)

    Article  Google Scholar 

  26. A. Azar, S. As, O. Akselsen, Determination of welding heat source parameters from actual bead shape. Comput. Mater. Sci. 54, 176–182 (2012)

    Article  Google Scholar 

  27. N. Murugan, R.S. Parmar, Effects of MIG process parameters on the geometry of the bead in the automatic surfacing of stainless steel. J. Mater. Process. Technol. 41(4), 381–398 (1994)

    Article  Google Scholar 

  28. R.S. Chandel, H.P. Seow, F.L. Cheong, Effect of increasing deposition rate on the bead geometry of submerged arc welds. J. Mater. Process. Technol. 72(1), 124–128 (1997)

    Article  Google Scholar 

  29. D.S. Nagesh, G.L. Datta, Genetic algorithm for optimization of welding variables for height to width ratio and application of ANN for prediction of bead geometry for TIG welding process. Appl. Soft Comput. 10(3), 897–907 (2010)

    Article  Google Scholar 

  30. T. Kannan, N. Murugan, Effect of flux cored arc welding process parameters on duplex stainless steel clad quality. J. Mater. Process. Technol. 176(1–3), 230–239 (2006)

    Article  Google Scholar 

  31. X. Jia, Z. Liu, S. Huang, Y. Fan, Z. Sun, A new method to estimate heat source parameters in gas metal arc welding simulations process. Fusion Eng. Des. 89, 40–48 (2014)

    Article  Google Scholar 

  32. A. Almazrouee, T. Shehata, S. Oraby, Effect of welding parameters on the weld bead geometry of low alloy steel using FCAW-empirical model approach. Int. J. Min. Metall. Mech. Eng. (IJMMME) 3(3), 88–92 (2015)

    Google Scholar 

  33. M. Sen, M. Mukherjee, T.K. Pal, Prediction of weld bead geometry for double pulse gas metal arc welding process by regression analysis, in Fifth International and 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR), December 12–14th, 2014

  34. P.S. Rao, O.P. Gupta, S.S.N. Murty, A.B.K. Rao, Effect of process parameters and mathematical model for the prediction of bead geometry in pulsed GMA welding. Int. J. Adv. Manuf. Technol. 45(5–6), 496–505 (2009)

    Article  Google Scholar 

  35. S. Chokkalingham, N. Chandrasekhar, M. Vasudevan, Predicting the depth of penetration and weld bead width from the infrared thermal image of the weld pool using artificial neural network modeling. J. Intell. Manuf. 23(5), 1995–2001 (2012)

    Article  Google Scholar 

  36. K.M. Kanti, P.S. Rao, Prediction of bead geometry in pulsed GMA welding using back propagation neural network. J. Mater. Process. Technol. 200(1), 300–305 (2008)

    Article  Google Scholar 

  37. G. Fu, J. Gu, M.I. Lourenço, M. Duan, S.F. Estefen, Parameter determination of double ellipsoidal heat source model and its application in the multi-pass welding process. Ships Offshore Struct. 10(2), 204–217 (2015)

    Article  Google Scholar 

  38. G. Fu, M.I. Lourenço, M. Duan, S.F. Estefen, Influence of the welding sequence on residual stress and distortion of fillet welded structures. Mar. Struct. 46, 30–55 (2016)

    Article  Google Scholar 

  39. H. Towsyfyan, D. Gholamreza, D.B. Heidarian, A. Kariminasab, Comparing the regression analysis and artificial neural network in modeling the SAW (SAW) process. Res. J. Appl. Sci. Eng. Technol. 5(9), 2701–2706 (2013)

    Article  Google Scholar 

  40. A. Sarkar, P. Dey, R.N. Rai, S.C. Saha, A comparative study of multiple regression analysis and back propagation neural network approaches on plain carbon steel in submerged-arc welding. Indian Acad. Sci. 41, 549–559 (2016)

    Google Scholar 

  41. M. Hashemzadeh, B.C. Chen, C. Guedes-Soares, Comparison between different heat sources types in thin-plate welding simulation. In: G. Soares, L. Peña (eds) Developments in Maritime Transportation and Exploitation of Sea Resources. Taylor & Francis Group, London (2014).

  42. A. Lundback, Finite element modelling and simulation of welding of aerospace components, Master thesis, Lulea University Technology, Sweden, 2003

  43. D. Gery, H. Long, P. Maropoulos, Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding. J. Mater. Process. Technol. 167(2–3), 393–401 (2005)

    Article  Google Scholar 

  44. D. Camilleri, N. McPherson, T. Gray, The applicability of using low transformations temperature welding wire to minimize unwanted residual stresses and distortions. Int. J. Press. Vessels Piping 110, 2–8 (2013)

    Article  Google Scholar 

  45. K. Hibbit, A. Sorensen, User’s and Theory Manuals Version 6.12 (Hibbit, Karlsson and Sorensen, Inc., Providence, 2013)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Brazilian Research Council (CNPq) for the research project Repair Welding (Contract No. 456319/2013-1) conducted at the Subsea Technology Lab, COPPE – Federal University of Rio de Janeiro. The first author also acknowledges the Instituto Nacional de Ciência e Tecnologia – Energias Oceânicas e Fluviais (INEOF) for the post-doctoral scholarship (Contract INCT 465672/2014-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Chujutalli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chujutalli, J.H., Lourenço, M.I. & Estefen, S.F. Experimental-based methodology for the double ellipsoidal heat source parameters in welding simulations. Mar Syst Ocean Technol 15, 110–123 (2020). https://doi.org/10.1007/s40868-020-00074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40868-020-00074-4

Keywords

Navigation