Skip to main content
Log in

Texture Development of ARB-Processed Steel-Based Nanocomposite

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the evolution of deformation texture in steel-based nanocomposite fabricated via accumulative roll bonding (ARB) process was investigated. Textural evolution during the ARB process was evaluated using x-ray diffraction. It was found that with increasing number of ARB cycles, first, intensity of α-fiber, γ-fiber, and θ-fiber decreased and then increased, while ζ-fiber exhibited the opposite trend compared to these fibers. Also, there were texture transitions in ε-fiber and η-fiber. It was realized that with increasing the number of ARB cycles, volume fraction of low-angle grain boundary decreased and the fraction of high-angle grain boundary increased. In addition, shear texture was predominant after first cycle, while for other samples, rolling texture was dominant. When recrystallization occurred, the intensity of ζ-fiber increased, the intensity of α-fiber and γ-fiber decreased, and the intensity of {011}〈100〉 orientation in ε-fiber and η-fiber remarkably increased. Indeed, the transition from rolling texture to shear texture was a sign of occurrence of discontinuous recrystallization after the first ARB cycle. Moreover, in the one-cycle sample, nucleation of discontinuous recrystallization had occurred. Finally, with increasing the number of cycles, the intensity of rolling texture increased and the intensity of shear texture decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Orlov, A. Pougis, R. Lapovok, L.S. Toth, I.B. Timokhina, P.D. Hodgson, A. Haldar, and D. Bhattacharjee, Asymmetric Rolling of Interstitial-Free Steel Using Differential Roll Diameters. Part I: Mechanical Properties and Deformation Textures, Metall. Mater. Trans. A, 2013, 44, p 4346–4359

    Article  Google Scholar 

  2. M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical Properties of Nanocrystalline Materials, Prog. Mater. Sci., 2006, 51, p 427–556

    Article  Google Scholar 

  3. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103–189

    Article  Google Scholar 

  4. R. Jamaati, M.R. Toroghinejad, M. Hoseini, and J.A. Szpunar, Investigation of Nanostructured Al/Al2O3 Composite Produced by Accumulative Roll Bonding Process, Mater. Sci. Eng. A, 2011, 528, p 3573–3580

    Article  Google Scholar 

  5. V.D. Cojocaru, D. Raducanu, D.M. Gordin, and I. Cinca, Texture Evolution During ARB (Accumulative Roll Bonding) Processing of Ti-10Zr-5Nb-5Ta alloy, J. Alloys Compd., 2013, 546, p 260–269

    Article  Google Scholar 

  6. M.R. Toroghinejad, R. Jamaati, J. Dutkiewicz, and J.A. Szpunar, Investigation of Nanostructured Aluminum/Copper Composite Produced by Accumulative Roll Bonding and Folding Process, Mater. Des., 2013, 51, p 274–279

    Article  Google Scholar 

  7. M.R. Toroghinejad, F. Ashrafizadeh, and R. Jamaati, On the Use of Accumulative Roll Bonding Process to Develop Nanostructured Aluminum Alloy 5083, Mater. Sci. Eng. A, 2013, 561, p 145–151

    Article  Google Scholar 

  8. R. Jamaati, M.R. Toroghinejad, and H. Edris, Effect of Stacking Fault Energy on Nanostructure Formation Under Accumulative Roll Bonding (ARB) Process, Mater. Sci. Eng. A, 2013, 578, p 191–196

    Article  Google Scholar 

  9. R. Jamaati, M.R. Toroghinejad, and H. Edris, Fabrication of Nanoparticle Strengthened IF Steel Via ARB Process, Mater. Sci. Eng. A, 2013, 583, p 20–24

    Article  Google Scholar 

  10. C. Lu, K. Tieu, and D. Wexler, Significant Enhancement of Bond Strength in the Accumulative Roll Bonding Process Using Nano-Sized SiO2 Particles, J. Mater. Process. Technol., 2009, 209, p 4830–4834

    Article  Google Scholar 

  11. C.W. Schmidt, C. Knieke, V. Maier, H.W. Hoppel, W. Peukert, and M. Goken, Accelerated Grain Refinement During Accumulative Roll Bonding by Nanoparticle Reinforcement, Scripta Mater., 2011, 64, p 245–248

    Article  Google Scholar 

  12. C.W. Schmidt, C. Knieke, V. Maier, H.W. Hoppel, W. Peukert, and M. Goken, Influence of Nanoparticle Reinforcement on the Mechanical Properties of Ultrafine-Grained Aluminium Produced by ARB, Mater. Sci. Forum, 2011, 667-669, p 725–730

    Google Scholar 

  13. M. Rezayat, A. Akbarzadeh, and A. Owhadi, Fabrication of High-Strength Al/SiCp Nanocomposite Sheets by Accumulative Roll Bonding, Metal. Mater. Trans. A, 2012, 43, p 2085–2093

    Article  Google Scholar 

  14. M. Alizadeh and M.H. Paydar, Fabrication of Nanostructure Al/SiCP Composite by Accumulative Roll-Bonding (ARB) Process, J. Alloys Compd., 2010, 492, p 231–235

    Article  Google Scholar 

  15. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science Ltd., Oxford, UK, 2004

    Google Scholar 

  16. O. Engler and V. Randle, Introduction to Texture Analysis—Macrotexture, Microtexture, and Orienatation Mapping, 2nd ed., Taylor & Francis Group, New York, 2010

    Google Scholar 

  17. N. Kamikawa, T. Sakai, and N. Tsuji, Effect of Redundant Shear Strain on Microstructure and Texture Evolution During Accumulative Roll-Bonding in Ultralow Carbon IF Steel, Acta Mater., 2007, 55, p 5873–5888

    Article  Google Scholar 

  18. N. Tsuji, R. Ueji, and Y. Minamino, Nanoscale Crystallographic Analysis of Ultrafine Grained IF Steel Fabricated by ARB Process, Scripta Mater., 2002, 47, p 69–76

    Article  Google Scholar 

  19. E. Bonnot, A.L. Helbert, F. Brisset, and T. Baudin, Microstructure and Texture Evolution During the Ultra Grain Refinement of the Armco Iron Deformed by Accumulative Roll Bonding (ARB), Mater. Sci. Eng. A, 2013, 561, p 60–66

    Article  Google Scholar 

  20. M. Raei, M.R. Toroghinejad, R. Jamaati, and J.A. Szpunar, Effect of ARB Process on Textural Evolution of AA1100 Aluminum Alloy, Mater. Sci. Eng. A, 2010, 527, p 7068–7073

    Article  Google Scholar 

  21. M.R. Toroghinejad, F. Ashrafizadeh, R. Jamaati, M. Hoseini, and J.A. Szpunar, Textural Evolution of Nanostructured AA5083 Produced by ARB, Mater. Sci. Eng. A, 2012, 556, p 351–357

    Article  Google Scholar 

  22. R. Jamaati, M.R. Toroghinejad, M. Hoseini, and J.A. Szpunar, Development of Texture During ARB in Metal Matrix Composite, Mater. Sci. Technol., 2012, 28, p 406–410

    Article  Google Scholar 

  23. P. Hidalgo, C.M. Cepeda-Jimenez, O.A. Ruano, and F. Carreno, Influence of the Processing Temperature on the Microstructure, Texture, and Hardness of the 7075 Aluminum Alloy Fabricated by Accumulative Roll Bonding, Metall. Mater. Trans. A, 2010, 41, p 758–767

    Article  Google Scholar 

  24. R. Jamaati, M.R. Toroghinejad, M. Hoseini, and J.A. Szpunar, Texture Development in Al/Al2O3 MMCs Produced by Anodizing and ARB Processes, Mater. Sci. Eng. A, 2011, 528, p 3573–3580

    Article  Google Scholar 

  25. H.W. Kim, S.B. Kang, N. Tsuji, and Y. Minamino, Deformation Textures of AA8011 Aluminum Alloy Sheets Severely Deformed by Accumulative Roll Bonding, Metall. Mater. Trans. A, 2005, 36, p 3151–3163

    Article  Google Scholar 

  26. M.R. Toroghinejad, R. Jamaati, M. Hoseini, J.A. Szpunar, and J. Dutkiewicz, Texture Evolution of Nanostructured Aluminum/Copper Composite Produced by the Accumulative Roll Bonding and Folding Process, Metall. Mater. Trans. A, 2013, 44, p 1587–1598

    Article  Google Scholar 

  27. S. Roy, S. Singh, D.S. Suwas, S. Kumar, and K. Chattopadhyay, Microstructure and Texture Evolution During Accumulative Roll Bonding of Aluminium Alloy AA5086, Mater. Sci. Eng. A, 2011, 528, p 8469–8478

    Article  Google Scholar 

  28. X. Li, T. Al-Samman, and G. Gottstein, Microstructure Development and Texture Evolution of ME20 Sheets Processed by Accumulative Roll Bonding, Mater. Lett., 2011, 65, p 1907–1910

    Article  Google Scholar 

  29. H. Chang, M.Y. Zheng, W.M. Gan, K. Wu, E. Maawad, and H.G. Brokmeier, Texture Evolution of the Mg/Al Laminated Composite Fabricated by the Accumulative Roll Bonding, Scripta Mater., 2009, 61, p 717–720

    Article  Google Scholar 

  30. S. Li, F. Sun, and H. Li, Observation and Modeling of the Through-Thickness Texture Gradient in Commercial-Purity Aluminum Sheets Processed by Accumulative Roll-Bonding, Acta Mater., 2010, 58, p 1317–1331

    Article  Google Scholar 

  31. H.L. Yu, C. Lu, K. Tieu, and C. Kong, Fabrication of Ultrafine-Grained Aluminum Sheets by Four-Layer Accumulative Roll Bonding, Mater. Manuf. Process. (2013). Doi:10.1080/10426914.2013.872259.

  32. S.H. Lee, H. Utsunomiya, and T. Sakai, Microstructures and Mechanical Properties of Ultra Low Carbon Interstitial Free Steel Severely Deformed by a Multi-Stack Accumulative Roll Bonding Process, Mater. Trans., 2004, 45, p 2177–2181

    Article  Google Scholar 

  33. I. Samajdar, B. Verlinden, L. Kestens, and P. Van Houtte, Physical Parameters Related to the Developments of Recrystallization Textures in an Ultra Low Carbon Steel, Acta Mater., 1998, 47, p 55–65

    Article  Google Scholar 

  34. A.A. Gazder, S.S. Hazra, and E.V. Pereloma, Annealing Behaviour and Mechanical Properties of Severely Deformed Interstitial Free Steel, Mater. Sci. Eng. A, 2011, 530, p 492–503

    Article  Google Scholar 

  35. L. Kestens and J.J. Jonas, Deep Drawing Textures in Low Carbon Steels, Met. Mater., 1999, 5, p 419–427

    Article  Google Scholar 

  36. N. Tsuji, N. Kamikawa, and Y. Minamino, Effect of Strain on Deformation Microstructure and Subsequent Annealing Behavior of IF Steel Heavily Deformed by ARB Process, Mater. Sci. Forum, 2004, 467-470, p 341–348

    Article  Google Scholar 

  37. S.H. Hong and D.N. Lee, Recrystallization Textures in Cold-Rolled Ti Bearing IF Steel Sheets, ISIJ Int., 2002, 42, p 1278–1287

    Article  Google Scholar 

  38. R. Saha and R.K. Ray, Texture and Grain Growth Characteristics in a Boron Added Interstitial Free Steel After Severe Cold Rolling and Annealing, Mater. Sci. Eng. A, 2010, 527, p 1882–1890

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohollah Jamaati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamaati, R., Toroghinejad, M.R., Mohtadi-Bonab, M.A. et al. Texture Development of ARB-Processed Steel-Based Nanocomposite. J. of Materi Eng and Perform 23, 4436–4445 (2014). https://doi.org/10.1007/s11665-014-1233-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1233-z

Keywords

Navigation