Skip to main content
Log in

Texture Evolution of Nanostructured Aluminum/Copper Composite Produced by the Accumulative Roll Bonding and Folding Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the accumulative roll bonding and folding (ARBF) process was used for manufacturing nanostructured aluminum/copper multilayered composites. Textural evolution during the ARBF process of composites was evaluated using X-ray diffraction. Microstructural observation of some samples was evaluated by scanning electron microscopy and transmission electron microscopy. The ARBF process induced formation of a strong preferred orientation along the β-fiber and also to the pronounced copper texture component. In the aluminum side, occurrence of dynamic recovery reduced the intensity of the β-fiber rolling texture due to change in dislocation structure and decrease in the degree of strain hardening. On the other hand, occurrence of discontinuous dynamic recrystallization at the third and fourth ARBF cycles led to decreasing the intensity of fibers and texture components in the copper side. The average grain sizes of the final sample for the copper and aluminum sides were ~50 and ~200 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Yang, P. Cizek, P. Hodgson, and C. Wen: Scripta Mater., 2010, vol. 62, pp. 321–24.

    Article  CAS  Google Scholar 

  2. J. McKeown, A. Misra, H. Kung, R.G. Hoagland, and M. Nastasi: Scripta Mater., 2002, vol. 46, pp. 593–98.

    Article  CAS  Google Scholar 

  3. A.K. Srivastava, K. Yu-Zhang, L. Kilian, J.M. Frigerio, and J. Rivory: J. Mater. Sci., 2007, vol. 42, pp. 185–90.

    Article  CAS  Google Scholar 

  4. M. Eizadjou, A. Kazemi Talachi, H. Danesh Manesh, H. Shakur Shahabi, and K. Janghorban: Compos. Sci. Technol., 2008, vol. 68, pp. 2003–09.

    Article  CAS  Google Scholar 

  5. K.X. Wei, W. Wei, Q.B. Du, and J. Hu: Mater. Sci. Eng. A, 2009, vol. 525, pp. 55–59.

    Article  Google Scholar 

  6. K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, and M.Y. Zheng: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3073–78.

    Article  Google Scholar 

  7. G. Min, J.M. Lee, S.B. Kang, and H.W. Kim: Mater. Lett., 2006, vol. 60, pp. 3255–59.

    Article  CAS  Google Scholar 

  8. S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, and K. Hono: Acta Mater., 2007, vol. 55, pp. 2885–95.

    Article  CAS  Google Scholar 

  9. P.H. Shingu, K.N. Ishihara, A. Otsuki, and I. Daigo: Mater. Sci. Eng. A, 2001, vols. 304–306, pp. 399–402.

  10. K. Yasuna, M. Terauchi, A. Otsuki, K.N. Ishihara, and P.H. Shingu: Mater. Sci. Eng. A, 2000, vol. 85, pp. 412–17.

    Google Scholar 

  11. J.G. Luo and V. Acoff: Mater. Sci. Eng. A, 2004, vol. 379, pp. 164.

    Article  Google Scholar 

  12. J.G. Luo and V. Acoff: Mater. Sci. Eng. A, 2006, vol. 433, pp. 334.

    Article  Google Scholar 

  13. G.P. Dinda, H. Rosner, and G. Wilde: Mater. Sci. Eng. A, 2005, vols. 410–411, pp. 328–31.

  14. G.P. Dinda, H. Rosner, and G. Wilde: Scripta Mater., 2005, vol. 52, pp. 577–82.

    Article  CAS  Google Scholar 

  15. R. Jamaati, M.R. Toroghinejad, J. Dutkiewicz, and J.A. Szpunar: Mater. Des., 2012, vol. 35, pp. 37–42.

    Article  CAS  Google Scholar 

  16. R. Jamaati and M.R. Toroghinejad: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7430–35.

    Article  Google Scholar 

  17. R. Jamaati and M.R. Toroghinejad: Mater. Des., 2010, vol. 31, pp. 4816–22.

    Article  CAS  Google Scholar 

  18. R. Jamaati and M.R. Toroghinejad: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4146–51.

    Article  Google Scholar 

  19. M. Raei, M.R. Toroghinejad, R. Jamaati, and J.A. Szpunar: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7068–73.

    Article  Google Scholar 

  20. R. Jamaati, M.R. Toroghinejad, M. Hoseini, and J.A. Szpunar: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3573–80.

    Article  Google Scholar 

  21. R. Jamaati, M.R. Toroghinejad, M. Hoseini, and J.A. Szpunar: Mater. Sci. Technol., 2012, vol. 28, pp. 406–10.

    Article  CAS  Google Scholar 

  22. H. Chang, M.Y. Zheng, W.M. Gan, K. Wu, E. Maawad, and H.G. Brokmeier: Scripta Mater., 2009, vol. 61, pp. 717–20.

    Article  CAS  Google Scholar 

  23. C.P. Heason and P.B. Prangnell: Mater. Sci. Forum, 2002, vols. 408–412, pp. 733–38.

  24. H.W. Kim, S.B. Kang, N. Tsuji, and Y. Minamino: Acta Mater., 2005, vol. 53, pp. 1737–49.

    Article  CAS  Google Scholar 

  25. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science Ltd., Oxford, U.K., 2004.

    Google Scholar 

  26. L. Chen, Q. Shi, D. Chen, S. Zhou, J. Wang, and X. Luo: Mater. Sci. Eng. A, 2009, vol. 508, pp. 37–42.

    Article  Google Scholar 

  27. M. Shaarbaf and M.R. Toroghinejad: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1693–1700.

    Article  CAS  Google Scholar 

  28. S.G. Chowdhury, A. Dutta, B. Ravikumar, and A. Kumar: Mater. Sci. Eng. A, 2006, vol. 428, pp. 351–57.

    Article  Google Scholar 

  29. S. Pasebani, M.R. Toroghinejad, M. Hosseini, and J. Szpunar: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2050–56.

    Article  Google Scholar 

  30. D.A. Hughes and N. Hansen: Acta Mater., 2000, vol. 48, pp. 2985–3004.

    Article  CAS  Google Scholar 

  31. N. Hansen, X. Huang, and D.A. Hughes: Mater. Sci. Eng. A, 2001, vol. 317, pp. 3–11.

    Article  Google Scholar 

  32. W.C. Liu, C.S. Man, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1249–54.

    Article  Google Scholar 

  33. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelly, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.

    Article  Google Scholar 

  34. F. Heidelbach, H.R. Wenk, and S.R. Chen: Mater. Sci. Eng. A, 1996, vol. 215, pp. 39–49.

    Article  Google Scholar 

  35. J. Hirsch and K. Lucke: Acta Metall., 1988, vol. 36, pp. 2863–82.

    Article  CAS  Google Scholar 

  36. M.R. Toroghinejad, F. Ashrafizadeh, R. Jamaati, M. Hoseini, and J.A. Szpunar: Mater. Sci. Eng. A, 2012, vol. 556, pp. 351–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohollah Jamaati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toroghinejad, M.R., Jamaati, R., Hoseini, M. et al. Texture Evolution of Nanostructured Aluminum/Copper Composite Produced by the Accumulative Roll Bonding and Folding Process. Metall Mater Trans A 44, 1587–1598 (2013). https://doi.org/10.1007/s11661-012-1503-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1503-z

Keywords

Navigation