Skip to main content
Log in

Effect of Individual Layer Shape on the Mechanical Properties of Dissimilar Al Alloys Laminated Metal Composite Sheets

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

For the dissimilar laminated metal composite sheets (LMCS) fabricated by roll bonding technology, the great differences of mechanical properties between the constituent metals lead to the non-uniform deformation and individual layer necking. The individual layer shape affects the mechanical properties and microstructure of dissimilar LMCS. The Al/Al alloy (1100/7075) LMCS with the same thickness and ratio of dissimilar metals, but different individual layer shapes, have been successfully fabricated by hot accumulative roll bonding in conjunction with cold rolling technology. Some effective methods (such as sheet crown, warp degree, and slant angle) were presented to quantitatively evaluate the individual layer shape and necking of constituent metals. The microstructure and mechanical properties of 1100/7075 LMCS with different individual layer shapes were investigated. The effects of bonding interface on the mechanical properties were obtained based on the assessment of individual layer shapes and necking. The strength and elongation of LMCS decrease with the increase of variation of individual layer shapes and necking when the number of layers keeps constant. The research results offer some theoretical guides and references for adjusting the control measures of compatibility deformation, optimizing the hot roll bonding technologies, and designing the novel high-performance dissimilar LMCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.R. Lesuer, C.K. Syn, and O.D. Sherby, Mechanical Behaviour of Laminated Metal Composites, Int. Mater. Rev., 1996, 41(5), p 169–197

    Article  Google Scholar 

  2. J. An, Y.B. Liu, and D.R. Sun, Mechanism of Bonding of Al-Pb Alloy Strip and Hot Dip Aluminised Steel Sheet by Hot Rolling, Mater. Sci. Technol., 2001, 17(4), p 451–454

    Article  Google Scholar 

  3. J. Oh, W.C. Lee, and S.G. Pyo, Microstructural Analysis of Multilayered Titanium Aluminide Sheets Fabricated by Hot Rolling and Heat Treatment, Metall. Mater. Trans. A, 2002, 33(12), p 3649–3659

    Article  Google Scholar 

  4. F.X. Yin, L. Li, and Y. Tanaka, Hot Rolling Bonded Multilayered Composite Steels and Varied Tensile Deformation Behaviour, Mater. Sci. Technol., 2012, 28(7), p 783–787

    Article  Google Scholar 

  5. J.T. Liu, M. Li, S. Sheu, and M.E. Karabin, Macro- and Micro-Surface Engineering to Improve Hot Roll Bonding of Aluminum Plate and Sheet, Mater. Sci. Eng. A, 2008, 479(1-2), p 45–57

    Article  Google Scholar 

  6. H. Sheikh and E. Paimozd, Effect of Hot Accumulative Roll Bonding Process on the Mechanical Properties of AA5083, Open J. Met., 2011, 1(1), p 12–15

    Article  Google Scholar 

  7. D. Pan, K. Gao, and J. Yu, Cold Roll Bonding of Bimetallic Sheet and Strips, Mater. Sci. Technol., 1989, 5, p 934–939

    Article  Google Scholar 

  8. L. Li, K. Nagai, and F. Yin, Progress in Cold Roll Bonding of Metals, Sci. Technol. Adv. Mater., 2008, 9, p 023001–023011

    Article  Google Scholar 

  9. R. Jamaati and M.R. Toroghinejad, Cold Roll Bonding Bond Strengths: Review, Mater. Sci. Technol., 2011, 27(7), p 1101–1108

    Article  Google Scholar 

  10. R. Jamaati and M.R. Toroghinejad, Effect of Friction, Annealing Conditions and Hardness on the Bond Strength of Al/Al Strips Produced by Cold Roll Bonding Process, Mater. Des., 2010, 31(9), p 4508–4513

    Article  Google Scholar 

  11. H.S. Liu, B. Zhang, and G.P. Zhang, Enhanced Plasticity of Cu-Based Laminated Composites Produced by Cold Roll-Bonding, Mater. Sci. Forum, 2011, 667-669, p 1015–1020

    Article  Google Scholar 

  12. L.Y. Sheng, F. Yang, T.F. Xi, C. Lai, and H.Q. Ye, Influence of Heat Treatment on Interface of Cu/Al Bimetal Composite Fabricated by Cold Rolling, Compos. B Eng., 2011, 42(6), p 1468–1473

    Article  Google Scholar 

  13. H.Z. Yan and J.G. Lenard, A Study of Warm and Cold Roll-Bonding of an Aluminium Alloy, Mater. Sci. Eng. A, 2004, 385(1-2), p 419–428

    Article  Google Scholar 

  14. M. Eizadjou, H.D. Manesh, and K. Janghorban, Mechanism of Warm and Cold Roll Bonding of Aluminum Alloy Strips, Mater. Des., 2009, 30(10), p 4156–4161

    Article  Google Scholar 

  15. C.Y. Liu, Q. Wang, and Y.Z. Jia, Microstructures and Mechanical Properties of Mg/Mg and Mg/Al/Mg Laminated Composites Prepared Via Warm Roll Bonding, Mater. Sci. Eng. A, 2012, 556, p 1–8

    Article  Google Scholar 

  16. S.H. Kim, H.W. Kim, and Kwangjun. Euh, Effect of Wire Brushing on Warm Roll Bonding of 6XXX/5XXX/6XXX Aluminum Alloy Clad Sheets, Mater. Des., 2012, 35, p 290–295

    Article  Google Scholar 

  17. G. Heness, R. Wuhrer, and W.Y. Yeung, Interfacial Strength Development of Roll-Bonded Aluminium/Copper Metal Laminates, Mater. Sci. Eng. A, 2008, 483-484, p 740–742

    Article  Google Scholar 

  18. J. Wang, R.G. Hoagland, and X.Y. Liu, The Influence of Interface Shear Strength on the Glide Dislocation-Interface Interactions, Acta Mater., 2011, 59(8), p 3164–3173

    Article  Google Scholar 

  19. C.M. Cepeda-Jimenez, M. Pozuelo, and J.M. Garcia-Infanta, Influence of the Alumina Thickness at the Interfaces on the Fracture Mechanisms of Aluminium Multilayer Composites, Mater. Sci. Eng. A, 2008, 496(1-2), p 133–142

    Article  Google Scholar 

  20. I.-K. Kim and S.I. Hong, Effect of Heat Treatment on the Bending Behavior of Tri-layered Cu/Al/Cu Composite Plates, Mater. Des., 2013, 47, p 590–598

    Article  Google Scholar 

  21. Z. Chen, and K. Nyirenda, The Effect of Heat Treatment Technology on Mechanical Properties of Al/Al Alloys Multilayer Sheet Fabricated by Hot Roll Bonding, ICAA13: 13th International Conference on Aluminum Alloys, H. Weiland, A.D. Rollett, W.A. Cassada, Eds, June 3-7th, 2012, (Pennsylvania, US). The Minerals, Metals, & Materials Society, John Wiley & Sons, 2012, p 1705–1711

  22. M.R. Toroghinejad, F. Ashrafizadeh, R. Jamaati, Majid. Hoseini, and Jerzy.A. Szpunar, Textural Evolution of Nanostructured AA5083 Produced by ARB, Mater. Sci. Eng. A, 2012, 556, p 351–357

    Article  Google Scholar 

  23. M. Tayyebi and B. Eghbali, Study on the Microstructure and Mechanical Properties of Multilayer Cu/Ni Composite Processed by Accumulative Roll Bonding, Mater. Sci. Eng. A, 2013, 559, p 759–764

    Article  Google Scholar 

  24. M.R. Toroghinejad, R. Jamaati, and M. Hoseini, Texture Evolution of Nanostructured Aluminum/Copper Composite Produced by the Accumulative Roll Bonding and Folding Process, Metall. Mater. Trans. A, 2013, 44(3), p 1587–1598

    Article  Google Scholar 

  25. Y.Z. Tian and Z.F. Zhang, Stability of Interfaces in a Multilayered Ag-Cu Composite During Cold Rolling, Scr. Mater., 2013, 68(7), p 542–545

    Article  Google Scholar 

  26. I. Topic, H.W. Höppel, and M. Göken, Influence of Rolling Direction on Strength and Ductility of Aluminium and Aluminium Alloys Produced by Accumulative Roll Bonding, J. Mater. Sci., 2008, 43(23-24), p 7320–7325

    Article  Google Scholar 

  27. A. Azushima, R. Kopp, and A. Korhonen, Severe Plastic Deformation (SPD) Processes for Metals, CIRP Annu. Manuf. Technnol., 2008, 57(2), p 716–735

    Google Scholar 

  28. Y. Saito, N. Tsuji, and H. Utsunomiya, Ultra-fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process, Scr. Mater., 1998, 39(9), p 1221–1227

    Article  Google Scholar 

  29. N. Kamikawa, X. Huang, N. Tsuji, and N. Hansen, Strengthening Mechanisms in Nanostructured High-Purity Aluminium Deformed to High Strain and Annealed, Acta Mater., 2009, 57(14), p 4198–4208

    Article  Google Scholar 

  30. D. Terada, S. Inoue, and N. Tsuji, Microstructure and Mechanical Properties of Commercial Purity Titanium Severely Deformed by ARB Process, J. Mater. Sci., 2007, 42(5), p 1673–1681

    Article  Google Scholar 

  31. M. Eizadjou, A.K. Talachi, and H.D. Manesh, Investigation of Structure and Mechanical Properties of Multi-Layered Al/Cu Composite Produced by Accumulative Roll Bonding (ARB) Process, Compos. Sci. Technol., 2008, 68(9), p 2003–2009

    Article  Google Scholar 

  32. K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, and M.Y. Zheng, Microstructure and Mechanical Properties of the Mg/Al Laminated Composite Fabricated by Accumulative Roll Bonding (ARB), Mater. Sci. Eng. A, 2010, 527(13-14), p 3073–3078

    Article  Google Scholar 

  33. S. Roy, B.R. Nataraj, S. Suwas, S. Kumar, and K. Chattopadhyay, Accumulative Roll Bonding of Aluminum Alloys 2219/5086 Laminates: Microstructural Evolution and Tensile Properties, Mater. Des., 2012, 36, p 529–539

    Article  Google Scholar 

  34. K. Nyirenda, and Z. Chen, Mechanical Properties of Multilayer 1100/7075 Aluminum Sheet Produced by Hot ARB, ICAA13: 13th International Conference on Aluminum Alloys, H. Weiland, A.D. Rollett, W.A. Cassada, Eds, June 3-7th, 2012, (Pennsylvania, US). The Minerals, Metals, & Materials Society, John Wiley & Sons, 2012, p 1753–1760

  35. T. Hausöl, H.W. Höppel, and M. Göken, Tailoring Materials Properties of UFG Aluminium Alloys by Accumulative Roll Bonded Sandwich-Like Sheets, J. Mater. Sci., 2010, 45(17), p 4733–4738

    Article  Google Scholar 

  36. T. Hausöl, H.W. Höppel, and M. Göken, Ultrafine-Grained AA6014/AA5754 Laminates Produced by Accumulative Roll Bonding (ARB), Mater. Werkstofftech., 2012, 43(4), p 334–339

    Article  Google Scholar 

  37. L. Su, C. Lu, A. Kiet Tieu, G. Deng, and X. Sun, Ultrafine Grained AA1050/AA6061 Composite Produced by Accumulative Roll Bonding, Mater. Sci. Eng. A, 2013, 559, p 345–351

    Article  Google Scholar 

  38. A. Mozaffari, H.D. Manesh, and K. Janghorban, Evaluation of Mechanical Properties and Structure of Multilayered Al/Ni Composites Produced by Accumulative Roll Bonding (ARB) Process, J. Alloys Compd., 2010, 489(1), p 103–109

    Article  Google Scholar 

  39. R.N. Dehsorkhi, F. Qods, and M. Tajally, Investigation on Microstructure and Mechanical Properties of Al-Zn Composite During Accumulative Roll Bonding (ARB) Process, Mater. Sci. Eng. A, 2011, 530, p 63–72

    Article  Google Scholar 

  40. A. Shabani, M.R. Toroghinejad, and A. Shafyei, Fabrication of Al/Ni/Cu Composite by Accumulative Roll Bonding and Electroplating Processes and Investigation of its Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2012, 558, p 386–393

    Article  Google Scholar 

  41. M.R. Toroghinejad, F. Ashrafizadeh, and R. Jamaati, On the Use of Accumulative Roll Bonding Process to Develop Nanostructured Aluminum Alloy 5083, Mater. Sci. Eng. A, 2013, 561, p 145–151

    Article  Google Scholar 

  42. N.V. Govindaraj, J.G. Frydendahl, and B. Holmedal, Layer Continuity in Accumulative Roll Bonding of Dissimilar Material Combinations, Mater. Des., 2013, 52, p 905–915

    Article  Google Scholar 

Download references

Acknowledgments

This research project is supported by the National High Technology Research and Development Program of China (863 Program, No. 2013AA031304), the National Natural Science Foundation of China (No. 50890172), and the Danish-Chinese Center for Nanometals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zejun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Wu, X., Hu, H. et al. Effect of Individual Layer Shape on the Mechanical Properties of Dissimilar Al Alloys Laminated Metal Composite Sheets. J. of Materi Eng and Perform 23, 990–1001 (2014). https://doi.org/10.1007/s11665-013-0804-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0804-8

Keywords

Navigation