Skip to main content
Log in

Constitutive Modeling of Dynamic Recrystallization Kinetics and Processing Maps of Solution and Aging FGH96 Superalloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The hot deformation behavior of solution and aging FGH96 superalloy were investigated in the deformation temperature range of 1000-1175 °C and strain rate range of 0.001-5.0/s on a Gleeble-1500 thermo-mechanical simulator. The results show that the true stress-strain curves are typical of the occurrence of dynamic recrystallization (DRX). The value of the activation energy and materials constants of A and n was obtained through the hyperbolic sine function between the peak stress and Zener-Hollomon parameter. Optical microscopy observations of the grains showed that Zener-Hollomon parameter affected the DRX grain size obviously. In addition, the constitutive equations and DRX kinetics model were also built. The processing maps with the strain of 0.3 and 0.6 were obtained on the basis of dynamic materials model. The results predicted that there existed instability regions at around 1050 °C when the strain rate exceeds 0.01/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.R. Reed, The Superalloys: Fundamental and Applications, Cambridge University Press, New York, 2006, p 231–236

    Book  Google Scholar 

  2. Editiorial Committee of Aeronautical, China Aeronantical Materails Handbook, Standard Press of China, Beijing, 2002, p 46 (in Chinese)

    Google Scholar 

  3. Y.Q. Ning, Z.K. Yao, H.Z. Guo, M.W. Fu, H. Li, and X.H. Xie, Investigation on Hot Deformation Behavior of P/M Ni-Base Superalloy FGH96 by Using Processing Maps, Mater. Sci. Eng. A, 2010, 527(26), p 6794–6799

    Article  Google Scholar 

  4. W. Xu, L.W. Zhang, S.D. Gu, and J.L. Zhang, Hot Compressive Deformation and Microstructure Evolution of HIPed FGH96 Superalloy, Trans. Nonferr. Met. Soc., 2012, 22(1), p 66–71

    Article  CAS  Google Scholar 

  5. M.J. Zhang, F.G. Li, S.Y. Wang, and C.Y. Liu, Effect of Powder Preparation Technology on the Hot Deforamtion Behavior of HIPed P/M Nickel-Base Superalloy FGH96, Mater. Sci. Eng. A, 2011, 528(12), p 4030–4039

    Article  Google Scholar 

  6. J.T. Liu, G.Q. Liu, B.F. Hu, Z.R. Qin, S. Xiang, and Y.W. Zhang, The Coarsening Behavior of γ′ Particles in FGH96 Superalloys During the High Temperature Treatment, Rare Met. Mater. Eng., 2006, 35(3), p 418–421 (in Chinese)

    CAS  Google Scholar 

  7. J.T. Liu, G.Q. Liu, B.F. Hu, Y.P. Song, Z.R. Qin, and Y.W. Zhang, Hot Deformation Behavior of FGH96 Superalloys, J. Univ. Sci. Technol. B, 2006, 13(4), p 319–323

    Article  CAS  Google Scholar 

  8. B.F. Guo, H.P. Ji, X.G. Liu, L. Gao, R.M. Dong, M. Jin, and Q.H. Zhang, Research on Flow Stress During Hot Deformation Process and Processing Map for 316LN Austenitic Stainless Steel, J. Mater. Eng. Perform., 2012, 21(7), p 1455–1461

    Article  CAS  Google Scholar 

  9. M. Belbasi, M.T. Salehi, and S.A.A.A. Mousavi, Hot Deformation Behavior of NiTiHf Shape Memory Alloy Under Hot Compression Test, J. Mater. Eng. Perform., 2012, 21(12), p 2594–2599

    Article  CAS  Google Scholar 

  10. C. Zener and J.H. Hollomon, Effect of Strain-Rate Upon the Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32

    Article  Google Scholar 

  11. B. Mirzakhani, M.T. Salehi, S. Khoddam, S.H. Seyedein, and M.R. Aboutalebi, Investigation of Dynamic and Static Recrystallization Behavior During Thermomechanical Processing in a API-X70 Microalloyed Steel, J. Mater. Eng. Perform., 2009, 18(8), p 1029–1034

    Article  CAS  Google Scholar 

  12. G. Shen, S.L. Semiatin, and R. Shivpuri, Modeling Microstructure Development During the Forging of Waspaloy, Metall. Mater. Trans. A, 1995, 26(7), p 1795–1803

    Article  Google Scholar 

  13. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138

    Article  CAS  Google Scholar 

  14. L.X. Li, X.F. Liu, and L.Y. Wang, State and Development of Mathematical Simulation for Microstructure and Properties of Material during Hot Working, Special Steel, 2000, 21(1), p 1–6 (in Chinese)

    Google Scholar 

  15. C.M. Sellars and J.A. Whiteman, Recrystallization and Grain Growth in Hot Rolling, Met. Sci., 1979, 13(3-4), p 187–194

    CAS  Google Scholar 

  16. S.L. Liao, L.W. Zhang, C.X. Yue, J.B. Pei, and H.J. Gao, Hot Deformation Behaviors and Flow Stress Model of Gr15 Bearing Steel, J. Cent. South Univ. Technol., 2008, 15(5), p 575–580

    Article  CAS  Google Scholar 

  17. C.X. Yue, L.W. Zhang, S.L. Liao, J.B. Pei, H.J. Gao, Y.W. Jia, and X.J. Lian, Research on the Dynamic Recrystallization Behavior of GCr15 Steel, Mater. Sci. Eng. A, 2009, 499(1-2), p 177–181

    Article  Google Scholar 

  18. B.X. Wang, X.H. Liu, and G.D. Wang, Dynamic Recrystallization Behavior and Microstructural Volution in a Mn-Cr Gear Steel, Mater. Sci. Eng. A, 2005, 393, p 102–108

    Article  Google Scholar 

  19. V.V. Balasubrahmanyam and Y.V.R.K. Prasad, Hot Deformation Mechanisms in Ti-5.5Al-1Fe Alloy, J. Mater. Eng. Perform, 2001, 10(6), p 731–739

    Article  CAS  Google Scholar 

  20. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15(10), p 1883–1892

    Article  Google Scholar 

  21. Y.V.R.K. Prasad, Processing Maps: A Status Report, J. Mater. Eng. Perform, 2003, 12(6), p 638–645

    Article  CAS  Google Scholar 

  22. Y.V.R.K. Prasad, Rencent Advances in the Science of Mechanical Processing, Indian J. Technol., 1990, 4, p 435–451

    Google Scholar 

  23. P. Zhang, F.G. Li, and Q. Wan, Constitutive Equation and Processing Map for Hot Deformation of SiC Particles Reinforced Metal Matrix Composites, J. Mater. Eng. Perform., 2010, 19(9), p 1290–1297

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by Beijing Aeronautical Manufacturing Technology Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, L., Zhang, L., Zhu, Z. et al. Constitutive Modeling of Dynamic Recrystallization Kinetics and Processing Maps of Solution and Aging FGH96 Superalloy. J. of Materi Eng and Perform 22, 3728–3734 (2013). https://doi.org/10.1007/s11665-013-0699-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0699-4

Keywords

Navigation