Skip to main content
Log in

Hot Deformation Characteristics of GH4975 Nickel-Based Superalloy in the Coexistence Region of γ and γ′ Phases

  • Phase Transformation and Microstructure Evolution during Thermomechanical Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To provide a theoretical guidance for the hot deformation of the difficult-to-deform GH4975 superalloy, hot compression tests of homogenized GH4975 ingot were performed at the γ and γ′ coexistence temperatures of 1120–1210°C, the strain rates of 0.001–10 s−1, and the strain of 0.60. Arrhenius-type constitutive equation and hot processing maps have been constructed based on the corrected flow stresses. The microstructure evolution and dynamic recrystallization (DRX) characteristics have been investigated by considering the role of the γ′ phase. The results reveal that the flow stresses continuously decrease with decreasing the strain rate and increasing the temperature, and that the hot deformation activation energy is 1376.37 kJ mol−1. The optimum deformation parameters are located at the region with temperatures of 1150–1210°C and strain rates of 1–10 s−1. This region takes into account the high power dissipation efficiency and high stability of processing maps, as well as low crack sensitivity and high DRX fraction of the microstructure. Moreover, the primary DRX mechanism of the alloy is discontinuous DRX (DDRX), which exists widely in various deformation conditions. Continuous DRX (CDRX) and particle-induced DRX (PIDRX) play an auxiliary role, and the effect of them weakens or even disappears with decreasing the strain rate and increasing the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F.J. Yin, R. Fu, F.L. Li, P. Di, and D. Feng, J. Iron. Steel Res. Int. 30, 32 (2018).

    Google Scholar 

  2. M. Ou, Y. Ma, H. Ge, W. Xing, Y. Zhou, S. Zheng, and K. Liu, J. Alloys Compd. 735, 193 (2018).

    Article  Google Scholar 

  3. L. Xu, C.Q. Sun, C.Y. Cui, and C. Zhang, Mater. Sci. Eng. A 678, 110 (2016).

    Article  Google Scholar 

  4. X. Xiang, H. Jiang, J. Dong, and Z. Yao, Acta Metall. Sin. 56, 988 (2020).

    Google Scholar 

  5. Y. Zhang, X. Li, K. Wei, Z. Wan, C. Jia, T. Wang, Z. Li, Y. Sun, and H. Liang, Acta Metall. Sin. 56, 1401 (2020).

    Google Scholar 

  6. Z. Bi, H. Qin, Z. Dong, X. Wang, M. Wang, Y. Liu, J. Du, and J. Zhang, Acta Metall. Sin. 55, 1160 (2019).

    Google Scholar 

  7. S. Lv, C. Jia, X. He, Z. Wan, X. Li, and X. Qu, Materials 12, 3667 (2019).

    Article  Google Scholar 

  8. S. Lv, C. Jia, X. He, Z. Wan, Y. Li, and X. Qu, Adv. Eng. Mater. 22, 2000622 (2020).

    Article  Google Scholar 

  9. J. Chen, J. Dong, M. Zhang, and Z. Yao, Mater. Sci. Eng., A 673, 122 (2016).

  10. Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li, J. Alloys Compd. 640, 101 (2015).

    Article  Google Scholar 

  11. Z. Liu, W. Liu, H. Zhang, J. Ruan, H. Huang, X. Zhou, F. Meng, S. Zhang, and L. Jiang, J. Mater. Res. Technol. 24, 1973 (2023).

    Article  Google Scholar 

  12. Y. Li, Y. Dong, Z. Jiang, S. Du, K. Yao, Y. Wang, and X. Wang, Met. Mater. Int. 1, 1–14 (2023).

    Google Scholar 

  13. B. Xie, H. Yu, T. Sheng, Y. Xiong, Y. Ning, and M.W. Fu, J. Alloys Compd. 803, 16 (2019).

    Article  Google Scholar 

  14. J. Qu, X. Xie, Z. Bi, J. Du, and M. Zhang, J. Alloys Compd. 785, 918 (2019).

    Article  Google Scholar 

  15. X. Li, Z. Jiang, Z. Wan, Y. Zhang, C. Jia, T. Wang, and Z. Li, J. Mater. Eng. Perform. 29, 6343 (2020).

    Article  Google Scholar 

  16. P. Liu, R. Zhang, Y. Yuan, C. Cui, F. Liang, X. Liu, Y. Gu, Y. Zhou, and X. Sun, J. Mater. Sci. Technol. 77, 66 (2021).

    Article  Google Scholar 

  17. N. Bozzolo, N. Souaï, and R.E. Logé, Acta Mater. 60, 5056 (2012).

    Article  Google Scholar 

  18. G. Tan, H.Z. Li, Y. Wang, L. Yang, S.C. Qiao, Z.Q. Huang, and M.X. Liu, Trans. Nonferrous Met. Soc. China 30, 2709 (2020).

    Article  Google Scholar 

  19. L. Tan, Y. Li, F. Liu, Y. Nie, and L. Jiang, J. Mater. Sci. Technol. 35, 2591 (2019).

    Article  Google Scholar 

  20. P.J. Páramo-Kañetas, E.A. Orozco-Mendoza, J. Calvo, J.M. Cabrera-Marrero, M.A. Zamora-Antuñano, and M.P. Guerrero-Mata, J. Alloys Compd. 907, 164403 (2022).

    Article  Google Scholar 

  21. R.H. Zhu, Q. Liu, J.F. Li, Y.L. Chen, X.H. Zhang, and Z.Q. Zheng, Trans. Nonferrous Met. Soc. China 28, 404 (2018).

    Article  Google Scholar 

  22. B. Sun, T. Zhang, and L. Song, J. Alloys Compd. 891, 161944 (2022).

    Article  Google Scholar 

  23. S. Mandal, M. Jayalakshmi, A. Bhaduri, and V. Subramanya Sarma, Metall. Mater. Trans. 45, 5645 (2014).

    Article  Google Scholar 

  24. Y. Li, Y. Dong, Z. Jiang, K. Yao, S. Du, Y. Liu, and Z. Hou, J. Mater. Res. Technol. 19, 3366 (2022).

    Article  Google Scholar 

  25. F. Qin, H. Zhu, Z. Wang, X. Zhao, W. He, and H. Chen, Mater. Sci. Eng. A 684, 634 (2017).

    Article  Google Scholar 

  26. A. Nicolaÿ, G. Fiorucci, J.M. Franchet, J. Cormier, and N. Bozzolo, Acta Mater. 174, 406 (2019).

    Article  Google Scholar 

  27. Y. Zhou, Y. Liu, X. Zhou, C. Liu, L. Yu, C. Li, and B. Ning, J. Mater. Res. 30, 2090 (2015).

    Article  Google Scholar 

  28. F. Qin, Y. Li, W. He, X. Zhao, and H. Chen, J. Mater. Res. 32, 3864 (2017).

    Article  Google Scholar 

  29. X. Dai, and B. Yang, Steel Res. Int. 89, 1800208 (2018).

    Article  Google Scholar 

  30. A. Łukaszek-Sołek, T. Śleboda, J. Krawczyk, S. Bednarek, and M. Wojtaszek, J. Alloys Compd. 797, 174 (2019).

    Article  Google Scholar 

  31. A. Momeni, J. Mater. Res. 31, 1077 (2016).

    Article  Google Scholar 

  32. B. Paul, A. Sarkar, J.K. Chakravartty, A. Verma, R. Kapoor, A.C. Bidaye, I.G. Sharma, and A.K. Suri, Metall. Mater. Trans. A 41, 1474 (2010).

    Article  Google Scholar 

  33. Z. Wan, L. Hu, Y. Sun, T. Wang, and Z. Li, J. Alloys Compd. 769, 367 (2018).

    Article  Google Scholar 

  34. Y. Zhu, Y. Cao, Q. He, J. Zhang, R. Luo, H. Di, G. Huang, and Q. Liu, Intermetallics 141, 107433 (2022).

    Article  Google Scholar 

  35. L. Ouyang, R. Luo, Y. Gui, Y. Cao, L. Chen, Y. Cui, H. Bian, K. Aoyagi, K. Yamanaka, and A. Chiba, Mater. Sci. Eng. A 788, 139638 (2020).

    Article  Google Scholar 

  36. S. Guo, S. Wu, J. Guo, Y. Shen, and W. Zhang, J. Manuf. Process. 74, 100 (2022).

    Article  Google Scholar 

  37. H. Li, X. Zhuang, S. Lu, S. Antonov, L. Li, and Q. Feng, J. Alloys Compd. 894, 162489 (2022).

    Article  Google Scholar 

  38. Y. Prasad, and T. Seshacharyulu, Int. Mater. Rev. 43, 243 (1998).

    Article  Google Scholar 

  39. G. He, F. Liu, L. Huang, and L. Jiang, Adv. Eng. Mater. 18, 1823 (2016).

    Article  Google Scholar 

  40. H. Zhang, K. Zhang, H. Zhou, Z. Lu, C. Zhao, and X. Yang, Mater. Des. 80, 51 (2015).

    Article  Google Scholar 

  41. Y. Guan, Y. Liu, Z. Ma, H. Li, and H. Yu, Met. Mater. Int. 28, 1488 (2022).

    Article  Google Scholar 

  42. D. Jia, W. Sun, D. Xu, and F. Liu, J. Mater. Sci. Technol. 35, 1851 (2019).

    Article  Google Scholar 

  43. D. Cram, H.S. Zurob, Y. Brechet, and C. Hutchinson, Acta Mater. 57, 5218 (2009).

    Article  Google Scholar 

  44. P. Liu, R. Zhang, Y. Yuan, C. Cui, Y. Zhou, and X. Sun, J. Alloys Compd. 831, 154618 (2020).

    Article  Google Scholar 

  45. S.V. Mehtonen, L.P. Karjalainen, and D.A. Porter, Mater. Sci. Eng. A 571, 1 (2013).

    Article  Google Scholar 

  46. M.E. Kassner, and S.R. Barrabes, Mater. Sci. Eng. A 410–411, 152 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was support by the National Natural Science Foundation of China (Grant nos. 52174303 and 51874084), Fundamental Research Funds for the Central Universities (Grant no. 2125026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwu Dong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Dong, Y., Jiang, Z. et al. Hot Deformation Characteristics of GH4975 Nickel-Based Superalloy in the Coexistence Region of γ and γ′ Phases. JOM (2024). https://doi.org/10.1007/s11837-024-06499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06499-1

Navigation