Skip to main content
Log in

Thermomechanical Characterization of Mg-9Al-1Zn Alloy Using Power Dissipation Maps

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A processing map is developed on the basis of the Dynamic Material Model for Mg-9Al-1Zn. The model considers the work piece as a dissipator of power and power loss variation with temperature and strain rate constitutes the power dissipation map. To this end, the thermomechanical (i.e., hot compression) characteristics of a Mg-9Al-1Zn alloy was studied in the temperature range of 250-425 °C and strain rates of 0.001-1 s−1. The strain rate sensitivity (m), power dissipation efficiency (η), and instability parameter (ξ) are computed based on the experimental hot compression data. The deformation mechanisms of different regions in the maps are analyzed and corresponding microstructures are investigated. The processing map of Mg-9Al-1Zn alloy exhibits five workability domains. Dynamic recrystallization (DRX) was observed in three of the domains, while in the two other domains grain boundary sliding, twining, and precipitation are the dominant mechanisms. The optimum hot working conditions of Mg-9Al-1Zn alloy are located in the two domains where DRX takes place. They correspond to 375 °C/0.001 s−1 and 380 °C/1 s−1 with peak efficiency of 42 and 36%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y.V.R.K. Prasad and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, ASM International, Materials Park, OH, 1997

    Google Scholar 

  2. Y.V.R.K. Prasad and K.P. Rao, Mechanisms of High Temperature Deformation in Electrolytic Copper in Extended Ranges of Temperature and Strain Rate, Mater. Sci. Eng., A, 2004, 374, p 335–341

    Article  Google Scholar 

  3. Y.V.R.K. Prasad and K.P. Rao, Effect of Homogenization on the Hot Deformation Behavior of Cast AZ31 Magnesium Alloy, Mater. Des., 2009, 30, p 3723–3730

    Article  CAS  Google Scholar 

  4. Y.V.R.K. Prasad, K.P. Rao, N. Hort, and K.U. Kainer, Hot Workability Characteristics of Cast and Homogenized Mg-3Sn-1Ca Alloy, Mater. Sci. Eng., A, 2008, 201, p 359–363

    Google Scholar 

  5. Y.V.R.K. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng., A, 1998, 243, p 82–88

    Article  Google Scholar 

  6. F.-L. Sui, L.-X. Xu, L.-Q. Chen, and X.-H. Liu, Processing Map for Hot Working of Inconel 718 Alloy, J. Mater. Process. Technol., 2011, 211, p 433–440

    Article  CAS  Google Scholar 

  7. D. Cai, L. Xiong, W. Liu, G. Sun, and M. Yao, Development of Processing Maps for a Ni-Based Super Alloy, Mater. Charact., 2007, 58, p 941–946

    Article  CAS  Google Scholar 

  8. C.M. Cepeda-Jimenez, O.A. Ruano, M. Carsi, and F. Carreno, Study of Hot Deformation of an Al-Cu-Mg Alloy Using Processing Maps and Microstructural Characterization, Mater. Sci. Eng., A, 2012, 552, p 530–539

    Article  CAS  Google Scholar 

  9. B. Guo, H. Ji, L. Gao, R. Dong, M. Jin, and Q. Zhang, Research on Flow Stress During Hot Deformation Process and Processing Map for 316Ln Austenitic Stainless Steel, J. Mater. Eng. Perform., 2012, 21(7), p 1455–1461

    Article  CAS  Google Scholar 

  10. R. Rishi, Development of a Processing Map for Use in Warm-Forming and Hot-Forming Processes, Metall. Mater. Trans. A, 1981, 12(10), p 1089–1097

    Google Scholar 

  11. P. Zhang, F. Li, and Q. Wan, Constitutive equation and processing map for hot deformation of SiC particles reinforced metal matrix composition, J. Mater. Eng. Perform., 2010, 19(9), p 1290–1297

    Article  CAS  Google Scholar 

  12. O. Sivakesavam and Y.V.R.K. Prasad, Characteristics of Superplasticity Domain in the Processing Map for Hot Working of As-Cast Mg-11.5Li-1.5Al Alloy, Mater. Sci. Eng., A, 2002, 323, p 270–277

    Article  Google Scholar 

  13. O. Sivakesavam and Y.V.R.K. Prasad, Hot Deformation Behaviour of As-Cast Mg-2Zn-1Mn Alloy in Compression: A Study with Processing Map, Mater. Sci. Eng., A, 2003, 362, p 118–124

    Article  Google Scholar 

  14. C.Y. Wang, X.J. Wang, H. Chang, K. Wu, and M.Y. Zheng, Processing Maps for Hot Working of ZK60 Magnesium Alloy, Mater. Sci. Eng., A, 2007, 464, p 52–58

    Article  Google Scholar 

  15. Y. Wang, Y. Zhang, X. Zeng, and W. Ding, Characterization of Dynamic Recrystallisation in As-Homogenized Mg-Zn-Y-Zr Alloy Using Processing Map, J. Mater. Sci., 2006, 41, p 3603–3608

    Article  CAS  Google Scholar 

  16. M. Mu, Z. Zhi-min, Z. Bao-hong, and D. Jin, Flow Behaviors and Processing Maps of As-Cast and As-Homogenized AZ91 Alloy, J. Alloys Compd., 2012, 513, p 112–117

    Article  CAS  Google Scholar 

  17. G.F. Vander Voort, Metallography Principles and Practice, ASM International, Materials Park, OH, 1999

    Google Scholar 

  18. L. Liu and H. Ding, Study of the Plastic Flow Behaviors of AZ91 Magnesium Alloy During Thermomechanical Processes, J. Alloys Compd., 2009, 484, p 949–956

    Article  CAS  Google Scholar 

  19. S.W. Xu, N. Matsumoto, S. Kamado, T. Honma, and Y. Kojima, Dynamic Microstructural Changes in Mg-9Al-1Zn Alloy During Hot Compression, Scripta Mater., 2009, 61, p 249–252

    Article  CAS  Google Scholar 

  20. N.V. Ravi Kumar, J.J. Blandin, C. Desrayaud, F. Montheillet, and M. Suery, Grain Refinement in AZ91 Magnesium Alloy During Thermomechanical Processing, Mater. Sci. Eng., A, 2003, 359, p 150–157

    Article  Google Scholar 

  21. H.E. Hu, L. Zhen, L. Yang, W.Z. Shao, and B.Y. Zhang, Deformation Behavior and Microstructure Evolution of 7050 Aluminum Alloy During High Temperature Deformation, Mater. Sci. Eng., A, 2008, 488, p 64–71

    Article  Google Scholar 

  22. G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, Ed., Handbook of Workability and Process Design, ASM International, Material Park, OH, 2003, p 15–17

    Google Scholar 

  23. W.P. Peng, P.J. Li, P. Zeng, and L.P. Lei, Hot Deformation Behavior and Microstructure Evolution of Twin-Roll-Cast Mg-2.9Al-0.9Zn Alloy: A Study with Processing Map, Mater. Sci. Eng., A, 2008, 494, p 173–178

    Article  Google Scholar 

  24. G. Meng, B. Li, H. Li, H. Huang, and Z. Nie, Hot Deformation and Processing Maps of an Al-5.7 wt%Mg Alloy with Erbium, Mater. Sci. Eng., A, 2009, 517, p 132–137

    Article  Google Scholar 

  25. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, 1998, p 451–466

    Google Scholar 

  26. M.M. Myshlyaev, H.J. McQueen, A. Mwembela, and E. Konopleva, Twinning, Dynamic Recovery and Recrystallization in Hot Worked Mg-Al-Zn Alloy, Mater. Sci. Eng., A, 2002, 337, p 121–133

    Article  Google Scholar 

  27. S.E. Ion, F.J. Humphreys, and S.H. White, Dynamic Recrystallisation and the Development of Microstructure During the High Temperature Deformation of Magnesium, Acta Metall., 1982, 30, p 1909–1919

    Article  CAS  Google Scholar 

  28. K.U. Kainer, Magnesium Alloys and Technology, Wiley-VCH, Germany, 2003

    Book  Google Scholar 

  29. P. Griffiths and C. Hammond, Superplasticity in Large Grained Materials, Acta Metall., 1972, 20, p 935–945

    Article  CAS  Google Scholar 

  30. D. Rittel and Z.G. Wang, Thermo-mechanical Aspects of Adiabatic Shear Failure of AM50 and Ti6Al4V Alloys, Mech. Mater., 2008, 40, p 629–635

    Article  Google Scholar 

  31. D. Rittel, A.G. Wang, and M. Merzer, Adiabatic Shear Failure and Dynamic Stored Energy of Cold Work, Phys. Rev. Lett., 2006, 96, p 075502. doi:10.1103/PhysRevLett.96.075502

    Article  CAS  Google Scholar 

  32. S.M. Fatemi-Varzaneh and A. Zarei-Hanzaki, Shear Deformation and Grain Refinement During Accumulative Back Extrusion of AZ31 Magnesium Alloy, J. Mater. Sci., 2006, 46, p 1937–1944

    Article  Google Scholar 

  33. S. Fudetani, S. Mizunari, M. Horihata, Y. Torisaka, and M. Hirohashi, Superplastic Flow at Elevated Temperatures in As-Rolled AZ91 Sheet, ISIJ Int., 2006, 46, p 694–697

    Article  CAS  Google Scholar 

  34. Y.H. Wei, Q.D. Wang, Y.P. Zhu, H.T. Zhou, W.J. Ding, Y. Chino, and M. Mabuchi, Superplasticity and Grain Boundary Sliding in Rolled AZ91 Magnesium Alloy at High Strain Rates, Mater. Sci. Eng., A, 2003, 360, p 107–115

    Article  Google Scholar 

  35. N. Srinivasan, Y.V.R.K. Prasad, and K.P. Rao, Hot Deformation Behavior of Mg-3Al Alloy—A Study Using Processing Map, Mater. Sci. Eng., A, 2008, 467, p 146–156

    Article  Google Scholar 

  36. O. Sivakesavam, I.S. Rao, and Y.V.R.K. Prasad, Processing Map for Hot Working of as Cast Magnesium, Mater. Sci. Technol., 1993, 9, p 805–810

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Haghshenas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maldar, A.R., Ebrahimi, G.R., Haghshenas, M. et al. Thermomechanical Characterization of Mg-9Al-1Zn Alloy Using Power Dissipation Maps. J. of Materi Eng and Perform 22, 3306–3314 (2013). https://doi.org/10.1007/s11665-013-0616-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0616-x

Keywords

Navigation