Skip to main content
Log in

Factors Influencing the Reversion of Stress-induced Martensite to Austenite in a Fe-Mn-Si-Cr-Ni Shape Memory Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

It is well known that one way shape memory effect (SME) in Fe-Mn-Si-based shape memory alloys (SMAs) is related to the thermally induced reversion of ε (hexagonal close packed, hcp) stress-induced martensite (SIM) to γ (face centered cubic, fcc) austenite. In the case of a Fe-Mn-Si-Cr-Ni SMA, this reverse martensitic transformation was analyzed in regard to the critical temperature for the beginning of austenite formation (As) in different states characterized by quenching temperature and permanent tensile strain. For this purpose, dynamic mechanical analysis (DMA), dilatometry (DIL), differential thermal analysis (DSC), and optical microscopy (OM) were employed to determine the influence of quenching temperature and permanent tensile straining on SIM reversion to austenite during heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Maki, Ferrous Shape Memory Alloys, in: Shape Memory Materials, K. Otsuka and C.M. Wayman, Eds., Cambridge University Press, 1998, pp. 117–132.

    Google Scholar 

  2. A. Sato, E. Chishima, K. Soma and T. Mori, Shape Memory Effect in γ↔ε Transformation in Fe-30Mn-1Si Alloy Single Crystals, Acta Metall. 30, 1982, pp. 1177-1183.

    Article  CAS  Google Scholar 

  3. A. Sato, E. Chishima, Y. Yamaji and T. Mori, Orientation and Composition Dependencies of Shape Memory Effect in Fe-Mn-Si Alloys, Acta Metall. 32, 1984, pp. 539-547.

    Article  Google Scholar 

  4. M. Murakami, H. Suzuki and Y. Nakamura, Effect of Si on the Shape Memory Effect of Polycrystalline Fe-Mn-Si Alloys, Trans ISIJ 27, 1987, B-87.

    Google Scholar 

  5. M. Murakami, H. Otsuka, H. Suzuki and S. Matsuda, Effect of Alloying Content, Phase and Magnetic Transformation on the Shape Memory Effect of Fe-Mn-Si Alloys, Trans ISIJ 27, 1987, B-88.

    Google Scholar 

  6. M. Murakami, H. Otsuka and S. Matsuda, Improvement of Shape Memory Effect of Fe-Mn-Si Alloys, Trans ISIJ 27, 1987, B-89.

    Google Scholar 

  7. H. Otsuka, H. Yamada, T. Maruyama, H. Tanahashi, S. Matsuda and M. Murakami, Effects of Alloying Additions on Fe-Mn-Si Shape Memory Alloys, ISIJ Int, 30 1990, pp. 674-679.

    Article  CAS  Google Scholar 

  8. S. Kajiwara, Characteristic Features of Shape Memory Effect and Related Transformation Behavior in Fe-Based Alloys, Mater. Sci Eng A, 273-275, 1999, pp. 67-88.

    Article  Google Scholar 

  9. T. Y. Hsu and Xu Zuyao, Martensitic Transformation in Fe-Mn-Si Based Alloys, Mater. Sci Eng A, 273-275, 1999, pp. 494-497.

    Article  Google Scholar 

  10. O. Matsumura, T. Sumi, N. Tamura, K. Sakao, T. Furukawa and H. Otsuka, Pseudoelasticity in an Fe–28Mn–6Si–5Cr Shape Memory Alloy, Mater. Sci Eng A, 279, 2000, pp. 201–206.

    Article  Google Scholar 

  11. T. Sawaguchi, T. Kikuchi and S. Kajiwara, The Pseudoelastic Behavior of Fe–Mn–Si-based Shape Memory Alloys, Containing Nb and C, Smart Mater. Struct. 14, 2005, S317–S322,

    Article  CAS  Google Scholar 

  12. J. H. Yang, H. Chen and C. M. Wayman, Development of Fe-Based Shape Memory Alloys Associated with Face-Centered Cubic-Hexagonal Close-Packed Martensitic Transformations: Part I. Shape Memory Behavior, Metall Trans A 23A, 1992, pp. 1431-1437.

    Article  CAS  Google Scholar 

  13. Tan Shiming, Lao Jinhai and Yang Shiwei, Two-Way Shape Memory Effect of an Fe-Mn-Si Alloy, Scripta Metall. Mater. 25, 1991, 1119-1121.

    Article  Google Scholar 

  14. T. Sawaguchi, L. G. Bujoreanu, T. Kikuchi, K. Ogawa, M. Koyama and M. Murakami, Mechanism of Reversible Transformation-Induced Plasticity of Fe–Mn–Si Shape Memory Alloys, Scripta Mater 59, 2008, pp. 826–829.

    Article  CAS  Google Scholar 

  15. N. Stanford, D. P. Dunne and H. Li, Re-examination of the Effect of NbC Precipitation on Shape Memory in Fe-Mn-Si-Based Alloys, Scripta Mater. 58, 2008, pp. 583-586.

    Article  CAS  Google Scholar 

  16. Yuhua Wen, Ning Li and Mingjing Tu, Effect of Quenching Temperature on Recovery Stress of Fe-18Mn-5Si-8Cr-4Ni Alloy, Scripta mater. 44, 2001, pp. 1113–1116.

    Article  CAS  Google Scholar 

  17. L. G. Bujoreanu, V. Dia, S. Stanciu, M. Susan and C. Baciu, Study of the Tensile Constrained-Recovery Behavior of a Fe-Mn-Si Shape Memory Alloy, Eur. Phys. J. Special Topics, 158, 2008, pp. 15-20.

    Article  Google Scholar 

  18. J. H. Yang and C. M. Wayman, Self-Accommodation and Shape Memory Mechanism of ε-Martensite – I. Experimental Observations, Mater. Charact. 28, 1992, pp. 23-35.

    Article  CAS  Google Scholar 

  19. S. Kajiwara, D. Liu, T. Kikuchi and N. Shinya, Remarkable Improvement of Shape Memory Effect in Fe-Mn-Si Based Shape Memory Alloys by Producing NbC Precipitates, Scripta Mater. 44, 2001, pp. 2809–2814.

    Article  CAS  Google Scholar 

  20. Y. H. Wen, W. Zhang, N. Li, H. B. Peng and L.R. Xiong, Principle and Realization of Improving Shape Memory Effect in Fe-Mn-Si-Cr-Ni Alloy through Aligned Precipitations of Second-Phase Particles, Acta Mater. 55, 2007, 6526-6534.

    Article  CAS  Google Scholar 

  21. J. H. Yang, H. Chen and C. M. Wayman, Development of Fe-Based Shape Memory Alloys Associated with Face-Centered Cubic-Hexagonal Close-Packed Martensitic Transformations: Part II. Transformation Behavior, Metall Trans A 23A, 1992, pp. 1439-1444.

    Article  CAS  Google Scholar 

  22. N. Bergeon, G. Guenin and C. Esnouf, Microstructural Analysis of the Stress-Induced ε Martensite in a Fe-Mn-Si-Cr-Ni Shape memory Alloy. Part II: Transformation Reversibility, Mater. Sci Eng A, 242, 1998, pp. 87-95.

    Article  Google Scholar 

  23. Y.H. Wen, N. Li and L.R. Xiong, Composition Design Principles for Fe–Mn–Si–Cr–Ni Based Alloys with Better Shape Memory Effect and Higher Recovery Stress, Mater. Sci Eng A, 407, 2005, pp. 31-35.

    Article  Google Scholar 

  24. Huijun Li, D. Dunne and N. Kennon, Factors Influencing Shape Memory Effect and Phase Transformation Behaviour of Fe-Mn-Si Based Shape Memory Alloys, Mater. Sci Eng A, 273-275, 1999, pp. 517-523.

    Article  Google Scholar 

  25. N. Stanford, D.P. Dunne, Thermo-Mechanical Processing and the Shape Memory Effect in an Fe–Mn–Si-Based Shape Memory Alloy, Mater. Sci Eng A, 422, 2006, pp. 352–359.

    Article  Google Scholar 

  26. Lin Chengxin, Wang Guixin, Wu Yandong, Liu Qingsuo, Zhang Jianjun, Effect of Addition of V and C on Strain Recovery Characteristics in Fe–Mn–Si Alloy, Mater. Sci Eng A, 438–440, 2006, pp. 808–811.

    Article  Google Scholar 

  27. T. Sawaguchi, L. G. Bujoreanu, T. Kikuchi, K. Ogawa and F. Yin, Effects of Nb and C in Solution and in NbC Form on the Transformation-related Internal Friction of Fe-17 Mn (mass. %) Alloys, ISIJ Int 48(1), 2008, pp. 99-106.

    Article  CAS  Google Scholar 

  28. J. E. Bidaux, R. Schaller and W. Benoit, Study of the h.c.p-f.c.c. Phase Transition in Cobalt by Acoustic Measurements, Acta Metall., 37, 1989, pp. 803-811.

    Article  CAS  Google Scholar 

  29. J. Van Humbeeck, J. Stoiber, L. Delaey and Rolf Gotthardt, The High Damping Capacity of Shape Memory Alloys, Z. Metallkd. 86, 1995, pp. 176-183.

    Google Scholar 

  30. A. K. De, N. Cabanas and B. C. De Cooman, Fcc-hcp Transformation-Related Internal Friction in Fe-Mn Alloys, Z. Metallkd. 93, 2002, pp. 228-235.

    Article  CAS  Google Scholar 

  31. J. F. Wan, S. P. Chen, T. Y. Hsu and Y. N. Huang, Modulus Softening during the γ → ε Martensitic Transformation in Fe-25 Mn-6 Si-5 Cr-0.14 N Alloy, Mater. Sci Eng A, 438–440, 2006, pp. 887–890.

    Article  Google Scholar 

  32. A. Sato, K. Ozaki, Y. Watanabe and T. Mori, Internal Friction due to ε → γ Reverse Transformation in an Fe-Mn-Si-Cr Shape Memory Alloy, Mater. Sci Eng A, 101, 1988, pp. 25–30.

    Article  CAS  Google Scholar 

  33. T. Sawaguchi, T. Kikuchi, F. Yin, and S. Kajiwara, Internal Friction of an Fe-28Mn-6Si-5Cr-0.5NbC Shape Memory Alloy, Mater. Sci Eng A, 438-440, 2006, pp. 796–799.

    Article  Google Scholar 

  34. Bhadeshia, H. K. D. H., Bainite in steels, second edition, IOM Communications Ltd, 2001.

    Google Scholar 

  35. N. Van Caenegem, L. Duperez, K. Verbeken, D. Segers, Y. Houbaert, Stress related to the shape memory effect in Fe-Mn-Si-based shape memory alloys, Mater. Sci Eng A, 481-482, 2008, pp. 183-189.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by UEFISCU by means of the research Grant PN II-ID 301-PCE-2007-1, Contract no. 279/01.10.2007. Special thanks are due to Dr. Takahiro Sawaguchi, NIMS Tsukuba, for fruitful scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandru G. Bujoreanu.

Additional information

This article is an invited paper selected from presentations at Shape Memory and Superelastic Technologies 2008, held September 21-25, 2008, in Stresa, Italy, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bujoreanu, L.G., Stanciu, S., Comaneci, R.I. et al. Factors Influencing the Reversion of Stress-induced Martensite to Austenite in a Fe-Mn-Si-Cr-Ni Shape Memory Alloy. J. of Materi Eng and Perform 18, 500–505 (2009). https://doi.org/10.1007/s11665-009-9499-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-009-9499-2

Keywords

Navigation