Skip to main content
Log in

Effect of Pre-straining on the Shape Recovery of Fe-Mn-Si-Cr-Ni Shape Memory Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstarct

The effect of pre-straining on the shape recovery behavior of Fe-14Mn-6Si-9Cr-5Ni (wt pct) shape memory alloy (SMA) has been studied. The shape recovery associated with the reverse ε martensitic transformation, i.e., ε → γ, was characterized by dilatometry using specimens which were pre-strained to different extent (0 to 14 pct). Dilatometric studies revealed that in Fe-Mn-Si-Cr-Ni SMA, the shape recovery takes place in two stages: (i) in the first stage, the unpinned fraction of stress-induced ε martensite reverts back to parent phase γ in the temperature regime of 353 K to 653 K (80 °C to 380 °C) and (ii) in the second stage the remaining “pinned” ε martensite is unpinned by the decomposition of deformation-induced α′ martensite in the temperature range of 743 K to 893 K (470 °C to 620 °C). The amount of recovery in the first stage decreases with pre-strain, whereas it increases in the second stage. The ε → γ transformation finish temperature, A f, increases with increase in pre-strain amount, though the reverse transformation start temperature, A S, remains unaffected. Microstructural characterization revealed that the amount of deformation-induced α′ martensite depends on the mode of straining and the crystallographic texture of the starting material. The reversion of α′ martensite is seen to occur by the precipitation of Fe5Ni3Si2-type intermetallic π-phase within these plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Sato, E. Chisima, K. Soma and T. Mori, Acta Metall., 1982, vol. 30, pp 1177-1183.

    Article  Google Scholar 

  2. H. Otsuka, H. Yamada, T. Maruyama, H. Tanahashi, S. Matsuda and M. Murakami, ISIJ Int., 1990, vol. 30, pp 674-679.

    Article  Google Scholar 

  3. H. Inagaki, Z Metalkd., 1992, vol. 83, pp 90-96.

    Google Scholar 

  4. Sato, E. Chisima, Y. Yamaji and T. Mori, Acta Metall. 1984, vol. 32, pp 539-547.

    Article  Google Scholar 

  5. K. Tsuzaki, M. Ikegami, Y. Tomota, Y. Kurokawa, W. Nakagawara and T. Maki, Trans JIM, 1992, vol. 33, pp 263-270.

    Article  Google Scholar 

  6. M. M. Reyhani and P. G. McCormick, Scr. Metall. Mater., 1994, vol. 31, pp 875-878.

    Article  Google Scholar 

  7. H. Li and D. Dunne, ISIJ Int., 1997, vol. 37, pp 605-609.

    Article  Google Scholar 

  8. Z.Z. Dong, S. Kajiwara, T. Kikuchi and T. Sawaguchi, Acta Metall., 2005, vol. 53, pp 4009-4018.

    Google Scholar 

  9. M. Koyama, T. Sawaguchi and K. Tsuzaki, Mater. Sci. and Eng. A, 2011, vol. 528A, pp 2882-2288.

    Article  Google Scholar 

  10. H. Li, D.P. Dunne and N. Kennon, Mater. Sci. Eng. A, 1999, vol. 273A-275A, pp 517-523.

    Article  Google Scholar 

  11. B.C. Maji and M. Krishnan, Scripta Mater., 2003, vol. 48, pp 71-77.

    Article  Google Scholar 

  12. B.C. Maji, M. Krishnan, V. Hiwarkar, I. Samajdar and R. K. Ray, J. Mater. Eng. Perform., 2009, vol. 18, pp 588-593.

    Article  Google Scholar 

  13. H. Kubo, H. Otsuka, S. Farjami and T. Maruyama, Scripta Mater., 2006, vol. 55, pp 1059-1062.

    Article  Google Scholar 

  14. Sato, H. Kubo, T. Maruyama, Mater. Trans., 2006, vol. 47, pp 571- 579.

    Article  Google Scholar 

  15. W.Y. Jang, Q. Gu, J. Van Humbeeck and L. Delaey, Mater. Char., 1995, vol. 34, pp 67-72.

    Article  Google Scholar 

  16. E. Beraha and B. Shpigler, Colour Metallography, first edition, ASM International, Ohio, 1977.

    Google Scholar 

  17. J. H. Yang and C. M. Wayman, Metall. Trans. A, 1992, vol. 23A, pp 1445-1454.

    Article  Google Scholar 

  18. B.C. Maji, M. Krishnan, Gouthama and R.K. Ray, Metall. Mater. Trans A, 2011, vol. 42, pp 2154-2165.

    Google Scholar 

  19. B.C. Maji and M. Krishnan: in Proc. Int. Conf. Martensitic Transform, (ICOMAT-2008), G.B. Olson, D.S. Lieberman, and A. Saxena, eds., TMS, Santa Fe, New Mexico, 2009, pp. 349–357.

  20. E. Stalmasek, WRC Bulletin, 1986, vol. 318, pp 23-98.

    Google Scholar 

  21. H.S. Yang and H.K.D.H. Bhadeshia, Mat. Sci. Technol., 2007, vol. 23, pp 556-560.

    Article  Google Scholar 

  22. A. Verma, M. Sundararaman, J.B. Singh and S.A. Nalawade, Meas. Sci. Technol, 2010, vol. 21, pp 105-106.

    Article  Google Scholar 

  23. Y. Hashino, S. Nakamura, N. Ishikawa, Y. Yamaji, S. Matsumoto, Y. Tanaka and A. Sato, Mater. Trans. JIM, 1992, vol. 33, pp 253-262.

    Article  Google Scholar 

  24. N.V. Caenegem, L. Duprez, K. Verbeken, B.C. DeCooman, Y. Houbaert and D. Segers, ISIJ Int., 2007, vol. 47, pp 723-732.

    Article  Google Scholar 

  25. L. Orgeas and D. Favier, Acta Mater., 1998, vol. 46, pp 5579-5591.

    Article  Google Scholar 

  26. Y. Liu, Z. Xie, J. Van Humbeeck and L. Delaey, Acta Mater., 1998, vol. 46, pp 4325-4338.

    Article  Google Scholar 

  27. F. Nishimura, N. Watanabe and K. Tanaka, Mat. Sci. Eng. A, 1996, vol. 221A, pp 134-142.

    Article  Google Scholar 

  28. N. Stanford and D. Dunne, Scripta Mater., 2005, vol. 53, pp 739-744.

    Article  Google Scholar 

  29. H. Sehitoglu, I. Karaman, X.Y. Zhang, Y. Chumlyakov and H.J. Maier, Scr. Metall., 2001, vol. 44, pp 779-784.

    Article  Google Scholar 

  30. J. H. Yang and C. M. Wayman, Acta Metall., 1992, vol. 40, pp 2011-2023.

    Article  Google Scholar 

  31. B.C. Maji, M. Krishnan and V.V. RamaRao, Metall. Mater. Trans A, 2003, vol. 34A, pp 1029-1042.

    Article  Google Scholar 

  32. P. Duhaj, J. Ivan and E. Makovicky, J. Iron and Steel Inst., 1968, vol. 206, pp 1245-1252.

    Google Scholar 

  33. M.E. Wilms, V.J. Gadgil, J.M. Krougman and F.P. Ijsseling, Corr. Sci., 1994, vol. 36, pp 871-881.

    Article  Google Scholar 

  34. F. Abe, H. Arki and T. Noda, Mater. Sci. Technol., 1988, vol. 4, pp 885-893.

    Article  Google Scholar 

  35. R.J. Gray, V.K. Sikka and R.T. King, J. Metals, 1978, vol. 30, pp 18-26.

    Google Scholar 

  36. F.B. Waanders, S.W. Vorster and H. Pollak, Hyperfin Inter., 1999, vol. 120-121, pp 751-755.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikas C. Maji.

Additional information

Manuscript submitted April 6, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maji, B.C., Krishnan, M., Verma, A. et al. Effect of Pre-straining on the Shape Recovery of Fe-Mn-Si-Cr-Ni Shape Memory Alloys. Metall Mater Trans A 46, 639–655 (2015). https://doi.org/10.1007/s11661-014-2645-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2645-y

Keywords

Navigation