Skip to main content
Log in

Development of Fe-based shape memory alloys associated with face-centered cubic-hexagonal close-packed martensitic transformations: Part II. transformation behavior

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

As part of a study on the newly developed Fe-based shape memory alloys associated with face-centered cubic-hexagonal close-packed (fcc-hcp) martensitic transformations, transfor-mation behavior is characterized utilizing a combination of electrical resistance, dilatometry, and magnetic susceptibility measurements. The characteristics of thermally induced and strain-induced ε martensitic transformations under the influence of antiferromagnetism are discussed based on the experimental results. The variations of shape memory properties with prestraining temperature are interpreted in terms of the transformation characteristics. It is shown that the ε martensite can be readily strain-induced under the stabilization effect of the antiferromagnetism which strongly suppresses the thermally induced transformation. The strain-induced transfor-mation of ε martensite is more preferred as a predominant deformation mechanism at low tem-peratures under a combined influence of the antiferromagnetism and other physical factors, whereas the irreversible deformation mode is more likely with prestrain at relatively high tem-peratures. The transformation characteristics can be significantly changed by alloying and mechanical /thermal treatments. This offers a possibility of developing new practical Fe-based shape memory alloys with a wide range of mechanical and physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Yang, H. Chen, and C.M. Wayman:Metall. Trans. A, 1992, vol. 23A, pp. 1431–37.

    CAS  Google Scholar 

  2. J.W. Christian:The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, United Kingdom, 1965.

    Google Scholar 

  3. Z. Nishiyama:Martensitic Transformation, Academic Press, New York, NY, 1978.

    Google Scholar 

  4. C.S. Barrett:Trans. AIME, 1950, vol. 180, p. 123.

    Google Scholar 

  5. P.S. Kotval and R.W.K. Honeycombe:Acta Metall., 1968, vol. 16, p. 597.

    Article  CAS  Google Scholar 

  6. H. Fujita and S. Ueda:Acta Metall., 1972, vol. 20, p. 759.

    Article  CAS  Google Scholar 

  7. E. Garstein and A. Rabinkin:Acta Metall., 1979, vol. 27, p. 1053.

    Article  Google Scholar 

  8. A.P. Gulyaev, T.F. Volynova, and I.Y. Georgieva:Met. Sci. Heat Treatment, 1978, vol. 20, p. 179.

    Google Scholar 

  9. J.F. Breedis and Larry Kaufman:Metall. Trans., 1971, vol. 2, pp. 2359–71.

    Article  CAS  Google Scholar 

  10. J.F. Breedis and W.D. Robertson:Acta Metall., 1962, vol. 10, p. 1077.

    Article  CAS  Google Scholar 

  11. G.B. Oison and Morris Cohen:Metall. Trans. A, 1975, vol. 6A, pp. 791–95.

    Google Scholar 

  12. F. Trichter, A. Rabinkin, M. Ron, and A. Sharfstein:Scripta Metall., 1978, vol. 12, p. 431.

    Article  CAS  Google Scholar 

  13. L.N. Andryushchenko and I.Y. Georgiyeva:Fiz. Metal. Metalloved., 1972, vol. 33, p. 1285.

    CAS  Google Scholar 

  14. M. Murakami, H. Otsuka, H.G. Suzuki, and S. Matsuda:Proc. 1COMAT, Japan Inst. of Metals, Serdai, Japan, 1986, p. 985.

    Google Scholar 

  15. J.W. Brooks, M.H. Loretto, and R.E. Smallman:Acta Metall., 1979, vol. 27, p. 1839.

    Article  CAS  Google Scholar 

  16. J.T. Lenkkeri and J. Levoska:Phil. Mag. A, 1983, vol. 48, p. 749.

    Article  CAS  Google Scholar 

  17. E.R. Jones, T. Datta, C. Almasan, D. Edwards, and H.M. Ledbetter:Mater. Sci. Eng., 1987, vol. 91, p. 181.

    Article  CAS  Google Scholar 

  18. A. Sato, Y. Yamaji, and T. Mori:Acta Metall., 1986, vol. 34, p. 287.

    Article  CAS  Google Scholar 

  19. S. Chikazumi:Physics of Magnetism, Wiley, New York, NY, 1964, p. 82.

    Google Scholar 

  20. F. Lecroisey and A. Pineau:Metall. Trans., 1972, vol. 3, pp. 387–96.

    CAS  Google Scholar 

  21. L. Remy and A. Pineau:Mater. Sci. Eng., 1977, vol. 28, p. 99.

    Article  CAS  Google Scholar 

  22. J.T. Lenkkeri:J. Phys. F, 1981, vol. 11, p. 1997.

    Article  CAS  Google Scholar 

  23. M. Sade, K. Halter, and E. Hornbogen:J. Mater. Sci. Lett., 1990, vol. 9, p. 112.

    Article  CAS  Google Scholar 

  24. G.B. Olson and Morris Cohen:Metall. Trans. A, 1976, vol. 7A, pp. 1897–1904.

    CAS  Google Scholar 

  25. K. Sipos, L. Remy, and A. Pineau:Metall. Trans. A, 1976, vol. 7A, pp. 857–64.

    CAS  Google Scholar 

  26. G.B. Olson and Morris Cohen:Metall. Trans. A, 1976, vol. 7A, pp. 1915–23.

    CAS  Google Scholar 

  27. J.H. Yang and C.M. Wayman:Metall. Trans. A, 1992, vol. 23A, pp. 1445–54.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J.H., Chen, H. & Wayman, C.M. Development of Fe-based shape memory alloys associated with face-centered cubic-hexagonal close-packed martensitic transformations: Part II. transformation behavior. Metall Trans A 23, 1439–1444 (1992). https://doi.org/10.1007/BF02647327

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647327

Keywords

Navigation