Skip to main content
Log in

Behavior of p-type dopants in HgCdTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Obtaining high concentrations of active p-type dopants in HgCdTe is an issue of much current interest. We discuss the results of our calculations on column IB and VA dopants. The full-potential linear muffin-tin orbital method, based on the local density approximation is used to calculate electronic total energies and localized levels in the band gap. Free energies are predicted and incorporated into a thermodynamical model to calculate impurity and native defect concentrations as a function of temperature, stoichiometry, and total impurity density. Copper, silver, and gold are found to be incorporated nearly exclusively on the metal sublattice and to be 100% active for all near-equilibrium growth and processing conditions. The density of interstitial copper is high enough to impact copper diffusion. In contrast, significant concentrations of phosphorus, arsenic, and antimony are found on the metal sublattice where they behave as n-type dopants, accounting for highly compensated, or even n-type material, depending on the equilibration temperature and equivalent mercury partial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See for example, L.O. Bubulac, J. Bajaj, W.E. Temmant, M. Zandian, J. Pasko and W.V. McLevige, J. Electron. Mater. 25, 1312 (1996); P.S. Wijewarnasuriya, S.S. Yoo, J.P. Faurie and S. Sivananthan, J. Electron. Mater. 25,1300 (1996); P. Mitra, Y.L. Tyan., F.C. Case, R. Starr and M.B. Reine, J. Electron. Mater. 25, 1328 (1996); S.H. Shin, J.M. Arias, M. Zandian, J.G. Pasko, L.O. Bubulac and R.E. De Wames, J. Electron. Mater. 24, 609 (1995).

    Article  CAS  Google Scholar 

  2. H.R. Vydyanath, Semicon. Sci. Technol. 5, 213 (1990).

    Article  Google Scholar 

  3. U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).

    Article  Google Scholar 

  4. M.A. Berding, M. van Schilfgaarde and A. Sher, Phys. Rev. B 50, 1519 (1994).

    Article  CAS  Google Scholar 

  5. For a general discussion of the density functional formalism, upon which LDA is based, and its various modifications, see R.O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

    Article  CAS  Google Scholar 

  6. D. Langreth and D. Mehl, Phys. Rev. B 28, 1809 (1983).

    Article  CAS  Google Scholar 

  7. D. Chandra, M.W. Goodwin, M.C. Chen and J.A. Dodge, J. Electron. Mater. 22, 1033 (1993); S.H. Shin, J.M. Arias, M. Zandian, J.G. Pasko, L.O. Bubulac and R.E. De Wames, J. Electron. Mater. 24, 609 (1995).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berding, M.A., Sher, A. & Van Schilfgaarde, M. Behavior of p-type dopants in HgCdTe. J. Electron. Mater. 26, 625–628 (1997). https://doi.org/10.1007/s11664-997-0206-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-997-0206-5

Key words

Navigation