Skip to main content
Log in

Controlling A-center concentration in silicon through isovalent doping: mass action analysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It has been determined experimentally that doping silicon with large isovalent dopants such as tin can limit the concentration of vacancy-oxygen defects, this in turn, can be deleterious for the materials properties and its application. These results have been supported by recent calculations based on density functional theory employing hybrid functional. In the present study, we employ mass action analysis to calculate the impact of germanium, tin and lead doping on the relative concentrations of vacancy-oxygen defects and defect clusters in silicon under equilibrium conditions. In particular, we calculate how much isovalent doping is required to constrain vacancy-oxygen concentration in silicon and conclude that Sn and Pb doping are the most effective isovalent dopants. The results are discussed in view of recent experimental and computational results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V.V. Emtsev, N.V. Abrosimov, V.V. Kozlovskii, G. Oganesyan, Semiconductors 48, 1438 (2014)

    Article  Google Scholar 

  2. L.I. Murin, J.L. Lindstrom, B.G. Svensson, V.P. Markevich, A.R. Peaker, C.A. Londos, Solid State Phenom. 108–109, 267 (2005)

    Article  Google Scholar 

  3. H. Bracht, A. Chroneos, J. Appl. Phys. 104, 076108 (2008)

    Article  Google Scholar 

  4. C. Gao, X. Ma, J. Zhao, D. Yang, J. Appl. Phys. 113, 093511 (2013)

    Article  Google Scholar 

  5. R.C. Newman, R. Jones, “Oxygen in silicon” in Semiconductors and Semimetals, ed. by F. Shimura (Academic Press, Orlando, 1994), vol 42, p. 289

  6. J.W. Corbett, G.D. Watkins, R.S. McDonald, Phys. Rev. A 135, 1381 (1964)

    Article  Google Scholar 

  7. C.A. Londos, Phys. Stat. Sol. A 102, 639 (1987)

    Article  Google Scholar 

  8. C.A. Londos, E.N. Sgourou, D. Hall, A. Chroneos, J. Mater. Sci.: Mater. Electron. 25, 2395 (2014)

    Google Scholar 

  9. D.J. Hall, N.J. Murray, J.P.D. Gow, D. Wood, A. Holland, J. Instrum. 9, C12004 (2014)

    Article  Google Scholar 

  10. B.O. Kolbersen, A. Muhlbauer, Solid State Electron. 25, 759 (1982)

    Article  Google Scholar 

  11. R.C. Newman, Mater. Res. Soc. Symp. Proc. 59, 403 (1986)

    Article  Google Scholar 

  12. W. Scorupa, R.A. Yankov, Mater. Chem. Phys. 44, 101 (1996)

    Article  Google Scholar 

  13. G. Davies, E.C. Lightowlers, R.C. Newman, A.S. Oates, Semicond. Sci. Technol. 2, 524 (1987)

    Article  Google Scholar 

  14. R.C. Newman, A.R. Bean, Radiat. Eff. 8, 189 (1970)

    Article  Google Scholar 

  15. G.D. Watkins, K.L. Brower, Phys. Rev. Lett. 36, 1329 (1976)

    Article  Google Scholar 

  16. C.A. Londos, Phys. Rev. B 35, 6295 (1987)

    Article  Google Scholar 

  17. E.V. Lavrov, L. Hoffmann, B.B. Nielsen, Phys. Rev. B 60, 8081 (1999)

    Article  Google Scholar 

  18. C.A. Londos, M.S. Potsidi, E. Stakakis, Phys. B 340–342, 551 (2003)

    Article  Google Scholar 

  19. C.-L. Liu, W. Windl, L. Borucki, S. Lu, X.-Y. Liu, Appl. Phys. Lett. 80, 52 (2002)

    Article  Google Scholar 

  20. G. Davies, R.C. Newman, in Handbook of Semiconductors, ed. by S. Mahajan (Elsevier, Amsterdam, 1994), vol 3, p. 1557

  21. M. Yamaguchi, A. Khan, S.J. Taylor, K. Ando, T. Yamaguchi, S. Matsuda, T. Aburaya, J. Appl. Phys. 86, 217 (1999)

    Article  Google Scholar 

  22. K. Murata, Y. Yasutake, K. Nittoh, S. Fukatsu, K. Miki, AIP Adv. 1, 032125 (2011)

    Article  Google Scholar 

  23. J.M. Trombetta, G.D. Watkins, Appl. Phys. Lett. 51, 1103 (1987)

    Article  Google Scholar 

  24. R. Jones, S. Oberg, Phys. Rev. Lett. 68, 86 (1991)

    Article  Google Scholar 

  25. J. Coutinho, R. Jones, P.R. Briddon, S. Oberg, L.I. Murin, V.P. Markevich, J.L. Lindstrom, Phys. Rev. B 65, 014109 (2001)

    Article  Google Scholar 

  26. P. Leery, R. Jones, S. Oberg, V.J.B. Torres, Phys. Rev. B 55, 2188 (1997)

    Article  Google Scholar 

  27. R.B. Capaz, A. Dal Pino Jr, J.D. Joannopoulos, Phys. Rev. B 58, 9845 (1998)

    Article  Google Scholar 

  28. A. Mattoni, F. Bernantini, L. Colombo, Phys. Rev. B 66, 195214 (2002)

    Article  Google Scholar 

  29. C.A. Londos, M.S. Potsidi, G.D. Antonaras, A. Andrianakis, Phys. B 376–377, 165 (2006)

    Article  Google Scholar 

  30. D.J. Backlund, S.K. Estreicher, Phys. Rev. B 77, 205205 (2008)

    Article  Google Scholar 

  31. G.D. Watkins, I.E.E.E. Trans, Nucl. Sci. 16, 13 (1969)

    Article  Google Scholar 

  32. G.D. Watkins, Phys. Rev. B 12, 4383 (1975)

    Article  Google Scholar 

  33. L.C. Kimerling, M.T. Asom, J.L. Benton, P.J. Drevinsky, C.E. Caefer, Mater. Sci. Forum 38–41, 141 (1989)

    Article  Google Scholar 

  34. A. Chroneos, C. Jiang, R.W. Grimes, U. Schwingenschlogl, H. Bracht, Appl. Phys. Lett. 95, 112101 (2009)

    Article  Google Scholar 

  35. S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, A. Sakai, Appl. Phys. Lett. 92, 231916 (2008)

    Article  Google Scholar 

  36. A. Chroneos, C. Jiang, R.W. Grimes, U. Schwingenschlögl, H. Bracht, Appl. Phys. Lett. 94, 252104 (2009)

    Article  Google Scholar 

  37. C. Claeys, E. Simoen, V.B. Neimash, A. Kraitchinskii, M. Kras’ko, O. Puzenko, A. Blondeel, P. Clauws, J. Electrochem. Soc. 146, G738 (2001)

    Article  Google Scholar 

  38. M.L. David, E. Simoen, C. Claeys, V. Neimash, M. Kras’ko, A. Kraitchinskii, V. Voytovych, A. Kabaldin, J.F. Barbot, Solid State Phenom. 108–109, 373 (2005)

    Article  Google Scholar 

  39. C.A. Londos, D. Aliprantis, E.N. Sgourou, A. Chroneos, P. Pochet, J. Appl. Phys. 111, 123508 (2012)

    Article  Google Scholar 

  40. A. Chroneos, C.A. Londos, E.N. Sgourou, P. Pochet, Appl. Phys. Lett. 99, 241901 (2011)

    Article  Google Scholar 

  41. E.N. Sgourou, D. Timerkaeva, C.A. Londos, D. Aliprantis, A. Chroneos, D. Caliste, P. Pochet, J. Appl. Phys. 113, 113506 (2013)

    Article  Google Scholar 

  42. A. Chroneos, H. Bracht, R.W. Grimes, B.P. Uberuaga, Mater. Sci. Eng. B 154–155, 72 (2008)

    Article  Google Scholar 

  43. F.A. Kröger, V.J. Vink, in Solid State Physics, ed. by F. Seitz and D. Turnbull (Academic, New York, 1956), vol 3, p. 307

  44. H. Wang, A. Chroneos, C.A. Londos, E.N. Sgourou, U. Schwingenschlögl, Appl. Phys. Lett. 103, 052101 (2013)

    Article  Google Scholar 

  45. H. Wang, A. Chroneos, C.A. Londos, E.N. Sgourou, U. Schwingenschlögl, Sci. Rep. 4, 4909 (2014)

    Google Scholar 

  46. H. Wang, A. Chroneos, C.A. Londos, E.N. Sgourou, U. Schwingenschlögl, Phys. Chem. Chem. Phys. 16, 8487 (2014)

    Article  Google Scholar 

  47. A. Chroneos, R.W. Grimes, B.P. Uberuaga, S. Brotzmann, H. Bracht, Appl. Phys. Lett. 91, 192106 (2007)

    Article  Google Scholar 

  48. G. Impellizzeri, S. Boninelli, F. Priolo, E. Napolitani, C. Spinella, A. Chroneos, H. Bracht, J. Appl. Phys. 109, 113527 (2011)

    Article  Google Scholar 

  49. M.J. Powell, S.C. Deane, Phys. Rev. B 53, 10121 (1995)

    Article  Google Scholar 

  50. A. Chroneos, E.N. Sgourou, C.A. Londos, U. Schwingenschlögl, Appl. Phys. Rev. 2, 021306 (2015)

    Article  Google Scholar 

  51. A. Chroneos, C.A. Londos, E.N. Sgourou, J. Appl. Phys. 110, 093507 (2011)

    Article  Google Scholar 

  52. V.V. Voronkov, R. Falster, J. Electrochem. Soc. 149, G167 (2002)

    Article  Google Scholar 

  53. V.B. Neimash, V.V. Voitovych, A.M. Kraitchinskii, L.I. Shpinar, M.M. Krasko, V.M. Popov, A.P. Pokanevych, M.I. Gorodyskyi, Y.V. Pavlovskyi, V.M. Tsmots, O.M. Kabaldin, Ukr. J. Phys. 50, 492 (2005)

    Google Scholar 

  54. K. Milants, J. Verheyden, T. Balancira, W. Deweerd, H. Pattyn, S. Bukshpan, D.L. Williamson, F. Vermeiren, G. Van Tendeloo, C. Viekken, S. Libbrecht, C. Van Haesendonck, J. Appl. Phys. 81, 2148 (1997)

    Article  Google Scholar 

  55. A. Chroneos, C.A. Londos, J. Appl. Phys. 107, 093518 (2010)

    Article  Google Scholar 

  56. A. Chroneos, R.W. Grimes, H. Bracht, J. Appl. Phys. 105, 016102 (2009)

    Article  Google Scholar 

  57. A. Chroneos, H. Bracht, Appl. Phys. Rev. 1, 011301 (2010)

    Article  Google Scholar 

  58. A. Chroneos, J. Appl. Phys. 107, 076102 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

SRGC and AC are grateful for funding from the Lloyd’s Register Foundation, a charitable foundation helping to protect life and property by supporting engineering-related education, public engagement and the application of research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chroneos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christopoulos, SR.G., Parfitt, D.C., Sgourou, E.N. et al. Controlling A-center concentration in silicon through isovalent doping: mass action analysis. J Mater Sci: Mater Electron 27, 4385–4391 (2016). https://doi.org/10.1007/s10854-016-4308-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4308-9

Keywords

Navigation