Skip to main content

Advertisement

Log in

Exploration of n- and p-type doping for two-dimensional gallium nitride: charged defect calculation with first principles

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The calculation of charge transition energy level (CTL) and defect formation energy are of significance to explore potential n-type or p-type doping in materials. Based on the first-principles method, this paper systematically studied the structural, magnetic, and defect properties of 12 kinds of dopants in the two-dimensional hexagonal gallium nitride (2D h-GaN) system. The results show that the most stable charge states (MSCSs) for n-type systems are 0 and 1+, and all the n-type substitutes act as shallow donors. The MSCSs of the p-type systems are 1−, 0 and 1+, and the acceptor ionization energy is distributed higher than the valence band maximum (VBM) from ~1.25 to 2.85 eV, acting as deep acceptors, which will capture electrons (holes) in n-(p-type) 2D h-GaN and affect the carrier conductivity. Thus, it is difficult to achieve p-type doping through a single defect in 2D h-GaN, and complex defects are necessary to achieve p-type doping experimentally.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Lyons, A. Alkauskas, A. Janotti, C.G. Van de Walle, Phys. Status Solidi B 252, 900 (2015)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, Jiang, D. Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  3. J.-K. Sheu, G. Chi, J. Phys.: Condens. Matter 14, R657 (2002)

    ADS  Google Scholar 

  4. X. Zhang, L. Jin, X. Dai, G. Chen, G. Liu, ACS Appl. Mater. Interfaces 10, 38978 (2018)

    Article  Google Scholar 

  5. X. Wang, L. Xu, , Y. Jiang, Z. Yin, C.C.S. Chan, C. Deng, R.A. Taylor, J. Semicond. 40, 071906 (2019)

    Article  ADS  Google Scholar 

  6. Y. Chen, K. Liu, J. Liu, T. Lv, B. Wei, T. Zhang, M. Zeng, Z. Wang, L. Fu, J. Am. Chem. Soc. 140, 16392 (2018)

    Article  Google Scholar 

  7. Z.Y. Al Balushi, K. Wang, R.K. Ghosh, R.A. Vila, S.M. Eichfeld, J.D. Caldwell, X. Qin, Y.C. Lin, P.A. DeSario, G. Stone, S. Subramanian, D.F. Paul, R.M. Wallace, S. Datta, J.M. Redwing, J.A. Robinson, Nat. Mater. 15, 1166 (2016)

    Article  ADS  Google Scholar 

  8. C.G. Van de Walle, J. Neugebauer, J. Appl. Phys. 95, 3851 (2004)

    Article  ADS  Google Scholar 

  9. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014)

    Article  ADS  Google Scholar 

  10. F. Shahedipour, B.W. Wessels, Appl. Phys. Lett. 76, 3011 (2000)

    Article  ADS  Google Scholar 

  11. J.L. Lyons, A. Janotti, C.G. Van de Walle, Appl. Phys. Lett. 97, 152108 (2010)

    Article  ADS  Google Scholar 

  12. J.L. Lyons, A. Janotti, C.G. Van de Walle, Phys. Rev. Lett. 108, 156403 (2012)

    Article  ADS  Google Scholar 

  13. D.O. Demchenko, I.C. Diallo, M.A. Reshchikov, Phys. Rev. Lett. 110, 087404 (2013)

    Article  ADS  Google Scholar 

  14. I.C. Diallo, D.O. Demchenko, Phys. Rev. Appl. 6, 064002 (2016)

    Article  ADS  Google Scholar 

  15. P. Deák, M. Lorke, B. Aradi, T. Frauenheim, Phys. Rev. B 99, 085206 (2019)

    Article  ADS  Google Scholar 

  16. D. Wang, D. Han, X.-B. Li, N.-K. Chen, D. West, V. Meunier, S. Zhang, H.-B. Sun, Phys. Rev. B 96, 155424 (2017)

    Article  ADS  Google Scholar 

  17. H.P. Komsa, A. Pasquarello, Phys. Rev. Lett. 110, 095505 (2013)

    Article  ADS  Google Scholar 

  18. C. Freysoldt, J. Neugebauer, Phys. Rev. B 97, 205425 (2018)

    Article  ADS  Google Scholar 

  19. H. Gao, H. Ye, Z. Yu, Y. Zhang, Y. Liu, Y. Li, Superlattices Microstruct. 11, 136 (2017)

    Article  ADS  Google Scholar 

  20. J.-B. Li, H.-X. Liu, Superlattices Microstruct. 120, 382 (2018)

    Article  ADS  Google Scholar 

  21. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  22. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  23. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  24. A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006)

    Article  ADS  Google Scholar 

  25. V. Wang, N. Xu, J.-C Liu, G. Tang, W.-T. Geng. A User-friendly Interface Facilitating High-throughput Computing and Analysis Using VASP Code, https://arXiv:1908.08269 (2019)

  26. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, G. Ceder, Comput. Mater. Sci. 68, 314 (2013)

    Article  Google Scholar 

  27. N. Berseneva, A.V. Krasheninnikov, R.M. Nieminen, Phys. Rev. Lett. 107, 035501 (2011)

    Article  ADS  Google Scholar 

  28. M.R. Ahmadpour Monazam, U. Ludacka, H.-P. Komsa, J. Kotakoski, Appl. Phys. Lett. 115, 071604 (2019)

    Article  ADS  Google Scholar 

  29. J.L. Lyons, C.G. Van de Walle, npj Comput. Mater. 3, 12 (2017)

    Article  ADS  Google Scholar 

  30. A. Alkauskas, P. Broqvist, A. Pasquarello, Phys. Status Solidi B 248, 775 (2011)

    Article  ADS  Google Scholar 

  31. X. Liu, Z. Gao, V. Wang, Z. Luo, B. Lv, Z. Ding, Z. Zhang, ACS Appl. Nano Mater. 12, 17055 (2020)

    Article  Google Scholar 

  32. R. González, W. López-Pérez, á. González-García, M.G. Moreno-Armenta, R. González-Hernández, Appl. Surf. Sci. 433, 1049 (2018)

    Article  ADS  Google Scholar 

  33. J.L. Lyons, A. Janotti, C.G. Van de Walle, Appl. Phys. Lett. 97, 152108 (2010)

    Article  ADS  Google Scholar 

  34. T. Mattila, Phys. Rev. B 55, 9571 (1997)

    Article  ADS  Google Scholar 

  35. F. Shahedipour, B.W. Wessels, Appl. Phys. Lett. 76, 3011 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijiang Luo.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, X., Yang, X. et al. Exploration of n- and p-type doping for two-dimensional gallium nitride: charged defect calculation with first principles. Eur. Phys. J. B 93, 148 (2020). https://doi.org/10.1140/epjb/e2020-10166-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10166-6

Keywords

Navigation