Skip to main content
Log in

Study of Magnetic and Temperature-Dependent Dielectric Properties of Co-CuFe2O4 Nanoferrites

  • Topical Collection: Synthesis and Advanced Characterization of Magnetic Oxides
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present study focuses on the investigation of magnetic and temperature-dependent dielectric properties of Co-CuFe2O4 nanoferrites. CuFe2O4, Cu0.5Co0.5Fe2O4 and CoFe2O4 nanoparticles were prepared using sol–gel auto-combustion. X-ray diffraction (XRD) pattern shows a phase transformation from tetragonal (for CuFe2O4) to cubic (for Cu0.5Co0.5Fe2O4 and CoFe2O4) structure. Surface morphology of synthesized samples was analyzed by scanning electron microscopy, which shows formation of agglomerated, irregular shaped nanoparticles. Fourier transform infrared and Raman spectra of CuFe2O4, Cu0.5Co0.5Fe2O4 and CoFe2O4 nanoparticles support the results of XRD analysis. The UV–visible spectra of all the samples show strong absorption maxima in the visible range and are used to calculate the energy band gap of the synthesized nanoferrites. It was noticed that the value of band gap is highest for CuFe2O4 (1.58 ± 0.02 eV) nanoparticles in comparison to Cu0.5Co0.5Fe2O4 (1.18 ± 0.02 eV) and CoFe2O4 (1.01 ± 0.02 eV) ferrite systems. Magnetic study shows the highest value of coercivity (Hc) and squareness ratio (S) for Cu0.5Co0.5Fe2O4 (Hc = 959.10 ± 0.30 Oe, and S = 0.45 ± 0.05) ferrite. The dielectric measurement revealed a significantly lower value of tangent loss (tanδ) at higher frequencies for Cu0.5Co0.5Fe2O4 and CoFe2O4 ferrite samples in comparison to that for CuFe2O4. The high value of magnetic parameters, high resistivity (~ 107–108 Ω cm), and low dielectric loss at high frequencies for Cu0.5Co0.5Fe2O4 and CoFe2O4 nanoferrites suggests that the materials are potential candidate for high density magnetic recording media and also to be used in power transformers at high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.A. Gabal, Y.M. Al Angari, and F.A. Al-Agel, Cr-Substituted Ni–Zn Ferrites via Oxalate Decomposition. Structural, Electrical and Magnetic Properties. J. Magn. Magn. Mater. 391, 108–115 (2015). https://doi.org/10.1016/j.jmmm.2015.04.115.

    Article  CAS  Google Scholar 

  2. C.S. Pawar, M.P. Gujar, and V.L. Mathe, Optical Properties of Spin-Deposited Nanocrystalline Ni-Zn Ferrite Thin Films Processed by Sol-Gel. J. Supercond. Nov. Magn. 30, 615–625 (2017). https://doi.org/10.1007/s10948-016-3720-y.

    Article  CAS  Google Scholar 

  3. P. Kumar, S.K. Sharma, M. Knobel, and M. Singh, Effect of La+3 Doping on the Electric, Dielectric and Magnetic Properties of Cobalt Ferrite Processed by Co-precipitation Technique. J. Alloys Compd. 508, 115 (2010). https://doi.org/10.1016/j.jallcom.2010.08.007.

    Article  CAS  Google Scholar 

  4. P.S. Rawat, R.C. Srivastava, G. Dixit, G.C. Joshi, and K. Asokan, Facile Synthesis and Temperature Dependent Dielectric Properties of MnFe2O4 Nanoparticles. AIP Conf. Proceed. 2115, 030104 (2019). https://doi.org/10.1063/1.5112943.

    Article  CAS  Google Scholar 

  5. M.H. Abdellatif, C. Innocenti, I. Liakos, A. Scarpellini, S. Marras, and M. Salerno, Effect of Jahn-Teller Distortion on the Short Range Magnetic Order in Copper Ferrite. J. Magn. Magn. Mater. 424, 402 (2017). https://doi.org/10.1016/j.jmmm.2016.10.110.

    Article  CAS  Google Scholar 

  6. A.M. Balagurov, I.A. Bobrikov, V.Y. Pomjakushin, D.V. Sheptyakov, and V.Y. Yushankhai, Interplay Between Structural and Magnetic Phase Transitions in Copper Ferrite Studied with High-Resolution Neutron Diffraction. J. Magn. Magn. Mater. 374, 591 (2015). https://doi.org/10.1016/j.jmmm.2014.08.092.

    Article  CAS  Google Scholar 

  7. A. Paul and R. Mandal, Scope and Possibilities of Copper Based Semiconducting Materials in Optoelectronic Applications-A Review. Invertis J. Renew. Energy 7, 106 (2017). https://doi.org/10.5958/2454-7611.2017.00015.7.

    Article  Google Scholar 

  8. S. Anandan, T. Selvamani, G.G. Prasad, A.M. Asiri, and J.J. Wu, Magnetic and Catalytic Properties of Inverse Spinel CuFe2O4 Nanoparticles. J. Magn. Magn. Mater. 432, 437 (2017). https://doi.org/10.1016/j.jmmm.2017.02.026.

    Article  CAS  Google Scholar 

  9. M.A. Haija, A.F. Abu-Hani, N. Hamdan, S. Stephen, and A.I. Ayesh, Characterization of H2S Gas Sensor based on CuFe2O4 Nanoparticles. J. Alloys Compd. 690, 461 (2017). https://doi.org/10.1016/j.jallcom.2016.08.174.

    Article  CAS  Google Scholar 

  10. X. Cao, K. Sun, C. Sun, and L. Leng, The Study on Microstructure and Microwave-Absorbing Properties of Lithium Zinc Ferrites Doped with Magnesium and Copper. J. Magn. Magn. Mater. 321, 2896 (2009). https://doi.org/10.1016/j.jmmm.2009.04.049.

    Article  CAS  Google Scholar 

  11. K.K. Kefeni, T.A. Msagati, and B.B. Mamba, Ferrite Nanoparticles: Synthesis, Characterisation and Applications in Electronic Device. Mater. Sci. Eng. B 215, 37 (2017). https://doi.org/10.1016/j.mseb.2016.11.002.

    Article  CAS  Google Scholar 

  12. D.P. Sherstyuk, A.Y. Starikov, V.E. Zhivulin, D.A. Zherebtsov, S.A. Gudkova, N.S. Perov, and A.V. Trukhanov, Effect of Co Content on Magnetic Features and SPIN States in Ni–Zn Spinel Ferrites. Ceram. Int. 47, 12163 (2021). https://doi.org/10.1016/j.ceramint.2021.01.063.

    Article  CAS  Google Scholar 

  13. R. Kumar, H. Kumar, R.R. Singh, and P.B. Barman, Variation in Magnetic and Structural Properties of Co-doped Ni–Zn Ferrite Nanoparticles: a Different Aspect. J. Sol-Gel Sci. Tech. 78, 566 (2016). https://doi.org/10.1007/s10971-016-3984-5.

    Article  CAS  Google Scholar 

  14. V.S. Sawant and K.Y. Rajpure, The Effect of Co Substitution on the Structural and Magnetic Properties of Lithium Ferrite Synthesized by an Auto Combustion Method. J. Magn. Magn. Mater. 382, 152 (2015). https://doi.org/10.1016/j.jmmm.2015.01.064.

    Article  CAS  Google Scholar 

  15. C. Singh, S. Bindra-Narang, I.S. Hudiara, and Y. Bai, The Effect of Co and Zr Substitution on dc Magnetic Properties of Ba–Sr Ferrite. J. Alloys Compd. 464, 429 (2008). https://doi.org/10.1016/j.jallcom.2007.10.009.

    Article  CAS  Google Scholar 

  16. C.F. Zhang, X.C. Zhong, H.Y. Yu, Z.W. Liu, and D.C. Zeng, Effects of Cobalt Doping on the Microstructure and Magnetic Properties of Mn–Zn Ferrites Prepared by the Co-precipitation Method. Phys. B Cond. Matter. 404, 2327 (2009). https://doi.org/10.1016/j.physb.2008.12.044.

    Article  CAS  Google Scholar 

  17. A.G. Abraham, A. Manikandan, E. Manikandan, S. Vadivel, S.K. Jaganathan, A. Baykal, and P.S. Renganathan, Enhanced Magneto-Optical and Photo-Catalytic Properties of Transition Metal Cobalt (Co+2 Ions) Doped Spinel MgFe2O4 Ferrite Nanocomposites. J. Magn. Magn. Mater. 452, 380 (2018). https://doi.org/10.1016/j.jmmm.2018.01.001.

    Article  CAS  Google Scholar 

  18. L. Kumar, P. Kumar, and M. Kar, Cation Distribution by Rietveld Technique and Magnetocrystalline Anisotropy of Zn Substituted Nanocrystalline Cobalt Ferrite. J. Alloys Compd. 551, 72 (2013). https://doi.org/10.1016/j.jallcom.2012.10.009.

    Article  CAS  Google Scholar 

  19. G. Dixit, R.C. Singh, H.M. Srivastava, and Agrawal, Magnetic Resonance Study of Ce and Gd Doped NiFe2O4 Nanoparticles. J. Magn. Magn. Mater. 324, 479 (2012). https://doi.org/10.1016/j.jmmm.2011.08.027.

    Article  CAS  Google Scholar 

  20. A. Zainal Dedi, Manaf, Microstructure and Microwave Absorption Characteristics of BaTiO3-CoFe2O4 Composites. Key Eng. Mater. 855, 322 (2020).

    Article  Google Scholar 

  21. R. Dhyani and R.C. Srivastava, Structural and Magnetic Study of Co0.5Cu0.5Fe2O4/Polypyrrole Nanocomposites. J. Emerg. Technol. Innov. Res. 6, 291 (2019).

    Google Scholar 

  22. P.S. Rawat, R.C. Srivastava, G. Dixit, and K. Asokan, Structural, Functional and Magnetic Ordering Modifications in Graphene Oxide and Graphite by 100 MeV Gold Ion Irradiation. Vacuum 182, 109700 (2020). https://doi.org/10.1016/j.vacuum.2020.109700.

    Article  CAS  Google Scholar 

  23. A.S. Hamed, I.A. Ali, M. El Ghazaly, M. Al-Abyad, and H.E. Hassan, Nanocomposites of ZnO Mixed with Different Ni-Ferrite Contents: Structural and Magnetic Properties. Phys. B Condens. Mater. 607, 412861 (2021). https://doi.org/10.1016/j.physb.2021.412861.

    Article  CAS  Google Scholar 

  24. M.A. Ahmed, S.F. Mansour, and M.A. Abdo, Characterization and Dramatic Variations of the Magnetic Properties of Cu-Doped Nanometric Co Ferrite. Phys. Scr. 84, 055602 (2011).

    Article  Google Scholar 

  25. El-Masry, M. El-Shahat, R. Ramadan, and R.M. Abdelhameed, Selective Photocatalytic Reduction of Nitroarenes into Amines based on Cobalt/Copper Ferrite and Cobalt-Doped Copper Ferrite Nano-Photocatalyst. J. Mater. Sci. Mater. Electron. 32, 18408 (2021). https://doi.org/10.1007/s10854-021-06387-3.

    Article  CAS  Google Scholar 

  26. S. Rehman, M.A. Ansari, M.A. Alzohairy, M.N. Alomary, B.R. Jermy, R. Shahzad, and Z.H. Alsalem, Antibacterial and Antifungal Activity of Novel Synthesized Neodymium-Substituted Cobalt Ferrite Nanoparticles for Biomedical Application. Processes 7, 714 (2019). https://doi.org/10.3390/pr7100714.

    Article  CAS  Google Scholar 

  27. S. Bhaskaran, I.A. Al-Omari, and E.V. Gopalan, On the Enhanced Coercive Field and Anisotropy Observed in Cobalt Substituted Copper Ferrite Nanoparticles Prepared by a Modified Sol-Gel Method. J. Alloys Compd. 884, 161095 (2021). https://doi.org/10.1016/j.jallcom.2021.161095.

    Article  CAS  Google Scholar 

  28. M.A. Dar and D. Varshney, Effect of d-Block Element Co+2 Substitution on Structural, Mössbauer and Dielectric Properties of Spinel Copper Ferrites. J. Magn. Magn. Mater. 436, 101 (2017). https://doi.org/10.1016/j.jmmm.2017.04.046.

    Article  CAS  Google Scholar 

  29. R. Jabbar, S.H. Sabeeh, and A.M. Hameed, Structural, Dielectric and Magnetic Properties of Mn+2 Doped Cobalt Ferrite Nanoparticles. J. Magn. Magn. Mater. 494, 165726 (2020). https://doi.org/10.1016/j.jmmm.2019.165726.

    Article  CAS  Google Scholar 

  30. M. Hashim, S. Kumar, B.H. Koo, S.E. Shirsath, E.M. Mohammed, J. Kumar, and R. Shah, Structural, Electrical and Magnetic Properties of Co–Cu Ferrite Nanoparticles. J. Alloys Compd. 518, 11 (2012). https://doi.org/10.1016/j.jallcom.2011.12.017.

    Article  CAS  Google Scholar 

  31. R. Vishwaroop and S.N. Mathad, Synthesis, Structural, WH Plot and Size-Strain Analysis of Nano Cobalt Doped MgFe2O4 Ferrite. Sci. Sinter. 52, 349 (2020). https://doi.org/10.2298/SOS2003349V.

    Article  CAS  Google Scholar 

  32. Z. Karimi, Y. Mohammadifar, H. Shokrollahi, S.K. Asl, G. Yousefi, and L. Karimi, Magnetic and Structural Properties of Nano Sized Dy-Doped Cobalt Ferrite Synthesized by Co-precipitation. J. Magn. Magn. Mater. 361, 150 (2014). https://doi.org/10.1016/j.jmmm.2014.01.016.

    Article  CAS  Google Scholar 

  33. I.D. Brown, The Chemical Bond in Inorganic Chemistry—The Bond Valence Model. IU Cr monographs on Crystallography 12 (Oxford: Oxford University Press, 2002).

    Google Scholar 

  34. M. Prasad, B.R. Babu, K.V. Ramesh, and K. Trinath, Structural and Magnetic Studies on Chromium Substituted Ni-Zn Nano Ferrite Synthesized by Citrate Gel Auto Combustion Method. J. Supercond. Nov. Magn. 27, 2735 (2014). https://doi.org/10.1007/s10948-014-2637-6.

    Article  CAS  Google Scholar 

  35. J.A. Gomes, M.H. Sousa, F.A. Tourinho, J. Mestnik-Filho, R. Itri, and J. Depeyrot, Rietveld Structure Refinement of the Cation Distribution in Ferrite Fine Particles Studied by X-ray Powder Diffraction. J. Magn. Magn. Mater. 289, 184 (2005). https://doi.org/10.1016/j.jmmm.2004.11.053.

    Article  CAS  Google Scholar 

  36. M. Junaid, M.A. Khan, S.A. Abubshait, M.N. Akhtar, N.A. Kattan, A. Laref, and H.M.A. Javed, Structural, Spectral, Dielectric and Magnetic Properties of Indium Substituted Copper Spinel Ferrites Synthesized via Sol Gel Technique. Ceram. Int. 46, 27410 (2020). https://doi.org/10.1016/j.ceramint.2020.07.227.

    Article  CAS  Google Scholar 

  37. N. Kumar, R.K. Singh, and H.K. Satyapal, Structural, Optical, and Magnetic Properties of Non-stoichiometric Lithium Substituted Magnesium Ferrite Nanoparticles for Multifunctional Applications. J. Mater. Sci. Mater. Electron. 31, 9231 (2020). https://doi.org/10.1007/s10854-020-03454-z.

    Article  CAS  Google Scholar 

  38. S. Sagadevan, Z.Z. Chowdhury, and R.F. Rafique, Preparation and Characterization of Nickel Ferrite Nanoparticles via Co-precipitation Method. Mater. Res. (2018). https://doi.org/10.1590/1980-5373-MR-2016-0533.

    Article  Google Scholar 

  39. R. Sharma, P. Thakur, M. Kumar, N. Thakur, N.S. Negi, P. Sharma, and V. Sharma, Improvement in Magnetic Behaviour of Cobalt Doped Magnesium Zinc Nano-ferrites via Co-precipitation Route. J. Alloys Compd. 684, 569 (2016). https://doi.org/10.1016/j.jallcom.2016.05.200.

    Article  CAS  Google Scholar 

  40. V. Kumar, N. Kumar, S.B. Das, R.K. Singh, K. Sarkar, and M. Kumar, Sol-Gel Assisted Synthesis and Tuning of Structural, Photoluminescence, Magnetic and Multiferroic Properties by Annealing Temperature in Nanostructured Zinc Ferrite. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.05.215.

    Article  Google Scholar 

  41. T.M. Hammad, J.K. Salem, A.A. Amsha, and N.K. Hejazy, Optical and Magnetic Characterizations of Zinc Substituted Copper Ferrite Synthesized by a Co-precipitation Chemical Method. J. Alloys Compd. 741, 123 (2018). https://doi.org/10.1016/j.jallcom.2018.01.123.

    Article  CAS  Google Scholar 

  42. G. Dixit, J.P. Singh, R.C. Srivastava, and H.M. Agrawal, Structural, Optical and Magnetic Studies of Ce Doped NiFe2O4 Nanoparticles. J. Magn. Magn. Mater. 345, 65 (2013). https://doi.org/10.1016/j.jmmm.2013.05.060.

    Article  CAS  Google Scholar 

  43. J.P. Singh, G. Dixit, R.C. Srivastava, H.M. Agrawal, and R. Kumar, Raman and Fourier-Transform Infrared Spectroscopic Study of Nanosized Zinc Ferrite Irradiated with 200 MeV Ag+15 Beam. J. Alloys Compd. 551, 370 (2013). https://doi.org/10.1016/j.jallcom.2012.10.006.

    Article  CAS  Google Scholar 

  44. Z. Wang, R.T. Downs, V. Pischedda, R. Shetty, S.K. Saxena, C.S. Zha, and A. Waskowska, High-Pressure X-ray Diffraction and Raman Spectroscopic Studies of the Tetragonal Spinel CoFe2O4. Phys. Rev. B 68, 094101 (2003). https://doi.org/10.1103/PhysRevB.68.094101.

    Article  CAS  Google Scholar 

  45. S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, and V.N. Singh, Structural, Magnetic, Dielectric and Optical Properties of Nickel Ferrite Nanoparticles Synthesized by Co-precipitation Method. J. Mol. Struct. 1076, 55 (2014). https://doi.org/10.1016/j.molstruc.2014.07.048.

    Article  CAS  Google Scholar 

  46. M. Wojdyr, Fityk: a General-Purpose Peak Fitting Program. J. Appl. Crystallogr. 43, 1126–1128 (2010).

    Article  CAS  Google Scholar 

  47. S. Thota, S.C. Kashyap, S.K. Sharma, and V.R. Reddy, Micro Raman, Mossbauer and Magnetic Studies of Manganese Substituted Zinc Ferrite Nanoparticles: Role of Mn. J. Phys. Chem. Solids 91, 136–144 (2016). https://doi.org/10.1016/j.jpcs.2015.12.013.

    Article  CAS  Google Scholar 

  48. M.P. Ghosh and S. Mukherjee, Microstructural, Magnetic, and Hyperfine Characterizations of Cu-Doped Cobalt Ferrite Nanoparticles. J. Am. Ceram. Soc. 102, 7509–7520 (2019). https://doi.org/10.1111/jace.16687.

    Article  CAS  Google Scholar 

  49. M.A. Almessiere, Y. Slimani, S. Güner, M. Nawaz, A. Baykal, F. Aldakheel, and B.E.K.İR. Ozcelik, Magnetic and Structural Characterization of Nb+3 Substituted CoFe2O4 Nanoparticles. Ceram. Int. 45, 8222–8232 (2019). https://doi.org/10.1016/j.ceramint.2019.01.125.

    Article  CAS  Google Scholar 

  50. J. Tauc, Optical Properties of Amorphous Semiconductors Amorphous and Liquid Semiconductors (Boston: Springer, 1974), pp. 159–220. https://doi.org/10.1007/978-1-4615-8705-74.

    Book  Google Scholar 

  51. S. Anjum, J. Fayyaz, R. Khurram, and R. Zia, Tuning of Magnetic and Optical Properties of Co0.8 Zn0.2Fe2O4 Spinel Ferrite Thin Films Based on Post Annealing Temperature. J. Supercond. Nov. Magn. 31, 4095 (2018). https://doi.org/10.1007/s10948-018-4662-3.

    Article  CAS  Google Scholar 

  52. N.K. Gupta, Y. Ghaffari, S. Kim, J. Bae, K.S. Kim, and M. Saifuddin, Photocatalytic Degradation of Organic Pollutants Over MFe2O4 (M= Co, Ni, Cu, Zn) Nanoparticles at Neutral pH. Sci. Rep. 10, 1 (2020). https://doi.org/10.1038/s41598-020-61930-2.

    Article  CAS  Google Scholar 

  53. T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, and A. Shyichuk, Effect of Cobalt Substitution on Structural, Elastic, Magnetic and Optical Properties of Zinc Ferrite Nanoparticles. J. Alloys Compd. 731, 1256 (2018). https://doi.org/10.1016/j.jallcom.2017.10.103.

    Article  CAS  Google Scholar 

  54. A.A. Ati, Z. Othaman, and A. Samavati, Influence of Cobalt on Structural and Magnetic Properties of Nickel Ferrite Nanoparticles. J. Mol. Struct. 1052, 177 (2013). https://doi.org/10.1016/j.molstruc.2013.08.040.

    Article  CAS  Google Scholar 

  55. N.I. Dedi, T. Kristiantoro, G.F.N. Alam, and N. Sudrajat, Magnetic Properties of Cobalt Ferrite Synthesized by Mechanical Alloying. AIP Conf. Proceed. 1964, 020003 (2018).

    Article  Google Scholar 

  56. S. Munir, I. Ahmad, A. Laref, and H.M.T. Farid, Synthesis, Structural, Dielectric and Magnetic Properties of Hexagonal Ferrites. Appl. Phys. A 126, 1 (2020). https://doi.org/10.1007/s00339-020-03809-7.

    Article  CAS  Google Scholar 

  57. A.C.F.M. Costa, V.J. Silva, D.R. Cornejo, M.R. Morelli, R.H.G.A. Kiminami, and L. Gama, Magnetic and Structural Properties of NiFe2O4 Ferrite Nanopowder Doped with Zn. J. Magn. Magn. Mater. 320, 370 (2008). https://doi.org/10.1016/j.jmmm.2008.02.159.

    Article  CAS  Google Scholar 

  58. L. Zhao, Y. Cui, H. Yang, L. Yu, W. Jin, and S. Feng, The Magnetic Properties of Ni0.7Mn0.3GdxFe2−xO4 Ferrite. Mater. Lett. 60, 104–108 (2006). https://doi.org/10.1016/j.matlet.2005.07.083.

    Article  CAS  Google Scholar 

  59. C. Choodamani, G.P. Nagabhushana, B. Rudraswamy, and G.T. Chandrappa, Thermal Effect on Magnetic Properties of Mg-Zn Ferrite Nanoparticles. Mater. Lett. 116, 227 (2014). https://doi.org/10.1016/j.matlet.2013.11.024.

    Article  CAS  Google Scholar 

  60. U. Ghazanfar, S.A. Siddiqi, and G. Abbas, Study of Room Temperature dc Resistivity in Comparison with Activation Energy and Drift Mobility of NiZn Ferrites. Mater. Sci. Eng. B 118, 132 (2005). https://doi.org/10.1016/j.mseb.2004.12.086.

    Article  CAS  Google Scholar 

  61. A.M.A. Henaish, O.M. Hemeda, B.I. Salem, F.S. El-Sbakhy, and T. Khalass, Structural, Magnetic and Electrical Properties of Nano NiCrxFe2-xO4 Synthesized by Flash Auto Combustion Method. J. Phys. Conf. Series 1253, 012025 (2019). https://doi.org/10.1088/1742-6596/1253/1/012025.

    Article  CAS  Google Scholar 

  62. E.J.W. Verwey, P.W. Haaijman, F.C. Romeijn, and G.W. Vanoosterhout, Controlled-Valency Semiconductors. Philips Res. Rep. 5, 173 (1950).

    CAS  Google Scholar 

  63. S. Nasir, G. Asghar, M.A. Malik, and M. Anis-ur-Rehman, Structural, Dielectric and Electrical Properties of Zinc Doped Nickel Nanoferrites Prepared by Simplified Sol–Gel Method. J. Sol Gel Sci. Technol. 59, 111 (2011). https://doi.org/10.1007/s10971-011-2468-x.

    Article  CAS  Google Scholar 

  64. C.C. Chauhan, A.R. Kagdi, R.B. Jotania, A. Upadhyay, C.S. Sandhu, S.E. Shirsath, and S.S. Meena, Structural, Magnetic and Dielectric Properties of Co-Zr Substituted M-type Calcium Hexagonal Ferrite Nanoparticles in the Presence of α-Fe2O3 Phase. Ceram. Int. 44, 17812 (2018). https://doi.org/10.1016/j.ceramint.2018.06.249.

    Article  CAS  Google Scholar 

  65. D.H. Zhang and H.L. Ma, Scattering Mechanisms of Charge Carriers in Transparent Conducting Oxide Films. Appl. Phys. A 62, 487 (1996). https://doi.org/10.1007/BF01567122.

    Article  Google Scholar 

  66. C. Venkataraju, G. Sathish Kumar, and K. Sivakumar, Effect of Nickel on the Electrical Properties of Nanostructured MnZn Ferrite. J. Alloys Comp. 498, 203 (2010). https://doi.org/10.1016/j.jallcom.2010.03.160.

    Article  CAS  Google Scholar 

  67. T.J. Shinde, A.B. Gadkari, and P.N. Vasambekar, DC Resistivity of Ni–Zn Ferrites Prepared by Oxalate Precipitation Method. Mater. Chem. Phys. 111, 87 (2008). https://doi.org/10.1016/j.matchemphys.2008.03.028.

    Article  CAS  Google Scholar 

  68. C.G. Koops, On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audio Frequencies. Phys. Rev. 83, 121 (1951). https://doi.org/10.1103/PhysRev.83.121.

    Article  CAS  Google Scholar 

  69. M.A. Yousuf, M.M. Baig, N.F. Al-Khalli, M.A. Khan, M.F.A. Aboud, I. Shakir, and M.F. Warsi, The Impact of Yttrium Cations (Y3+) on Structural, Spectral and Dielectric Properties of Spinel Manganese Ferrite Nanoparticles. Ceram. Int. 45, 10936 (2019). https://doi.org/10.1016/j.ceramint.2019.02.174.

    Article  CAS  Google Scholar 

  70. A. Jain, and A.K. Panwar, Synergetic Effect of Rare-Earths Doping on the Microstructural and Electrical properties of Sr and Ca Co-doped BaTiO3 Nanoparticles. Ceram. Int. 46, 10270 (2020). https://doi.org/10.1016/j.ceramint.2020.01.020.

    Article  CAS  Google Scholar 

  71. J. Sharma, N. Sharma, J. Parashar, V.K. Saxena, D. Bhatnagar, and K.B. Sharma, Dielectric Properties of Nanocrystalline Co-Mg Ferrites. J. Alloys Compd. 649, 362 (2015). https://doi.org/10.1016/j.jallcom.2015.07.103.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, Reena Dhyani, is thankful to TEQIP-III, College of Technology, G.B. Pant University of Agriculture & Technology, Pantnagar, for providing the scholarship to carry out this research work. The authors also acknowledge IUAC for support of research work. Reena Dhyani sincerely acknowledges the help and suggestions received from Mr. R. C. Meena IUAC, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reena Dhyani.

Ethics declarations

Conflict of interest

The authors declare that they do not have conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhyani, R., Srivastava, R.C. & Dixit, G. Study of Magnetic and Temperature-Dependent Dielectric Properties of Co-CuFe2O4 Nanoferrites. J. Electron. Mater. 51, 5492–5507 (2022). https://doi.org/10.1007/s11664-022-09831-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09831-0

Keywords

Navigation