Skip to main content
Log in

Investigation of Substitution of Nickel Cations in Cobalt Ferrite (CoFe2O4) Nanoparticles and Their Influence on Frequency and Temperature Dependent Dielectric and Magnetodielectric Properties

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

CoFe2O4 (CFO) nanoparticles with different contents of Ni (x = 0.0, 0.05, 0.1, 0.15, and 0.2) (CoNixFe(2−x)O4) were prepared via sol–gel auto combustion method. The structural characteristics of the prepared samples were characterized using room temperature X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), RAMAN. Moreover, the electrical conductivity and magnetic properties of the nanoferrites were investigated using impedance analyzer and vibrating sample magnetometer. Pure CFO and Ni doped CFO showed spinel crystalline structure with presence of secondary phase at higher doping content of Ni. The FESEM micrographs of the nano ferrites showed different aggregations for the different Ni contents and reduction in particle size was obtained with increasing Ni content which was also divulged from the crystallite sizes calculated from XRD data. With Ni substitution, saturation magnetization was found to decrease rapidly. The frequency (100 Hz–1 MHz) and temperature (30–450 °C) dependent dielectric properties show that the dielectric constant is T-independent and at a certain point increasing trend overcomes. Magnetodielectric (MD) studies revealed that the magnetic ordering of Ni doped CFO consequences in the increase in number of polar domains thereby improving the MD effect. The high MD property outcome of this work established the unification of the synthesized samples for multifunctional device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Nisticò, F. Cesano, F. Garello, Magnetic materials and systems: Domain structure visualization and other characterization techniques for the application in the materials science and biomedicine. Inorganics 8(1), 6 (2020)

    Article  Google Scholar 

  2. W.H. Zhong, Nanoscience and Nanomaterials: Synthesis, Manufacturing and Industry Impacts (DEStech Publications Inc, New York, 2012)

    Google Scholar 

  3. R. Roy, New Materials: Fountainhead for New Technologies and New Science, in NASA Conference Publication (NASA, 1993), pp. 49–49

  4. S. Sharma, P. Jakhar, H. Sharma, CuFe2O4 nanomaterials: current discoveries in synthesis, catalytic efficiency in coupling reactions, and their environmental applications. J. Chin. Chem. Soc. 70(2), 107–127 (2023)

    Article  CAS  Google Scholar 

  5. Y. Wang, Structural, magnetic, and electrical properties of Nd-substituted cobalt ferrite. J. Mater. Sci. Mater. Electron. 33(14), 11017–11024 (2022)

    Article  CAS  Google Scholar 

  6. A. Farhan, J. Arshad, E.U. Rashid, H. Ahmad, S. Nawaz, J. Munawar, J. Zdarta, T. Jesionowski, M. Bilal, Metal ferrites-based nanocomposites and nanohybrids for photocatalytic water treatment and electrocatalytic water splitting. Chemosphere 310, 136835 (2023)

    Article  CAS  PubMed  Google Scholar 

  7. D. Varshney, K. Verma, A. Kumar, Substitutional effect on structural and magnetic properties of AxCo1–xFe2O4 (A= Zn, Mg and x= 0.0, 0.5) ferrites. J. Mol. Struct. 1006(1–3), 447–452 (2011)

    Article  CAS  Google Scholar 

  8. M.A. Almessiere, Y. Slimani, A.V. Trukhanov, A. Sadaqat, A. Demir Korkmaz, N.A. Algarou, H. Aydın, A. Baykal, M.S. Toprak, Review on functional bi-component nanocomposites based on hard/soft ferrites: structural, magnetic, electrical and microwave absorption properties. Nano Struct. Nano Obj. 26, 100728 (2021)

    Article  CAS  Google Scholar 

  9. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, A review on MnZn ferrites: synthesis, characterization and applications. Ceram. Int. 46(10), 15740–15763 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. P.A. Vinosha, A. Manikandan, A.S.J. Ceicilia, A. Dinesh, G.F. Nirmala, A.C. Preetha, Y. Slimani, M.A. Almessiere, A. Baykal, B. Xavier, Review on recent ad of zinc substituted cobalt ferrite nanoparticles: synthesis characterization and diverse applications. Ceram. Int. 47(8), 10512–10535 (2021)

    Article  CAS  Google Scholar 

  11. G.P. Hatch, R.E. Stelter, Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation (HGMS) systems. J. Magn. Magn. Mater. 225(1–2), 262–276 (2001)

    Article  CAS  Google Scholar 

  12. J.M. Silveyra, E. Ferrara, D.L. Huber, T.C. Monson, Soft magnetic materials for a sustainable and electrified world. Science 362(6413), eaao0195 (2018)

    Article  PubMed  Google Scholar 

  13. S. Amiri, H. Shokrollahi, The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng. C 33(1), 1–8 (2013)

    Article  CAS  Google Scholar 

  14. A.K. Giri, E.M. Kirkpatrick, P. Moongkhamklang, S.A. Majetich, V.G. Harris, Photomagnetism and structure in cobalt ferrite nanoparticles. Appl. Phys. Lett. 80(13), 2341–2343 (2002)

    Article  CAS  Google Scholar 

  15. S. Jauhar, J. Kaur, J.A. Goyal, S. Singhal, Tuning the properties of cobalt ferrite: a road towards diverse applications. RSC Adv. 6(100), 97694–97719 (2016)

    Article  CAS  Google Scholar 

  16. G. Baldi, D. Bonacchi, C. Innocenti, G. Lorenzi, C. Sangregorio, Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties. J. Magn. Magn. Mater. 311(1), 10–16 (2007)

    Article  CAS  Google Scholar 

  17. N. Sanpo, C.C. Berndt, C. Wen, J. Wang, Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater. 9(3), 5830–5837 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, Magnetic and electrical properties of In doped cobalt ferrite nanoparticles. J. Appl. Phys. 112, 8 (2012)

    Article  Google Scholar 

  19. F. Tourinho, R. Franck, R. Massart, R. Perzynski, Synthesis and magnetic properties of managanese and cobalt ferrite ferrite ferrofluids. J. Colloid Interface Sci. 128, 134 (1989)

    Google Scholar 

  20. K.L. Routray, D. Sanyal, D. Behera, Dielectric, magnetic, ferroelectric, and Mossbauer properties of bismuth substituted nanosized cobalt ferrites through glycine nitrate synthesis method. J. Appl. Phys. 122, 22 (2017)

    Article  Google Scholar 

  21. S.Y. Srinivasan, K.M. Paknikar, D. Bodas, V. Gajbhiye, Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine 13(10), 1221–1238 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. P.A. Vinosha, A. Manikandan, A.C. Preetha, A. Dinesh, Y. Slimani, M.A. Almessiere, A. Baykal, B. Xavier, G.F. Nirmala, Review on recent advances of synthesis, magnetic properties, and water treatment applications of cobalt ferrite nanoparticles and nanocomposites. J. Supercond. Nov. Magn. 34, 995–1018 (2021)

    Article  CAS  Google Scholar 

  23. S. Saha, K.L. Routray, D. Behera, Visible light driven photoluminescence activity of ZnFe2O4–Ag doped nanomaterials for photostability: green synthesis approach. Trans. Electr. Electron. Mater. 24, 1–8 (2023)

    Article  CAS  Google Scholar 

  24. K.L. Routray, S. Saha, D. Behera, Insight into the anomalous electrical behavior, dielectric and magnetic study of Ag-doped CoFe2O4 synthesised by Okra extract-assisted green synthesis. J. Electron. Mater. 49, 7244–7258 (2020)

    Article  Google Scholar 

  25. K.L. Routray, B. Sahoo, D. Behera, Structural, dielectric and magnetic properties of nano-sized CoFe2O4 employing various synthesis techniques for high frequency and magneto recording devices: a comparative analysis. Mater. Res. Express 5(8), 085016 (2018)

    Article  Google Scholar 

  26. G. Ji, S. Tang, B. Xu, B. Gu, Y. Du, Synthesis of CoFe2O4 nanowire arrays by sol–gel template method. Chem. Phys. Lett. 379(56), 484–489 (2003)

    Article  CAS  Google Scholar 

  27. J.G. Lee, H.M. Lee, C.S. Kim, Y.-J. Oh, Magnetic properties of CoFe2O4 powders and thin films grown by a sol-gel method. J. Magn. Magn. Mater. 177, 900–902 (1998)

    Article  Google Scholar 

  28. C. Cannas, A. Musinu, D. Peddis, G. Piccaluga, Synthesis and characterization of CoFe2O4 nanoparticles dispersed in a silica matrix by a sol−gel autocombustion method. Chem. Mater. 18(16), 3835–3842 (2006)

    Article  CAS  Google Scholar 

  29. M. Atif, R.S. Turtelli, R. Grössinger, M. Siddique, M. Nadeem, Adsorption of chromium (VI) on bismuth incorporated cobalt ferrite nanoparticles. Ceram. Int. 40, 471–478 (2014)

    Article  CAS  Google Scholar 

  30. P. Kumar, S. Pathak, A. Singh, H. Kuldeep, X. Khanduri, G.A. Wang, R.P. Basheed, Pant, Optimization of cobalt concentration for improved magnetic characteristics and stability of CoxFe3xO4 mixed ferrite nanomagnetic fluids. Mater. Chem. Phys. 265, 124476 (2021)

    Article  CAS  Google Scholar 

  31. S. Tiwari, S. Vitta, Magnetoelectric and magnetodielectric coupling and microwave resonator characteristics of Ba0.5Sr0.5Nb2O6/CoCr04Fe16O4 multiferroic composite. Sci. Rep. 8(1), 11619 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  32. D.L. Sekulic, Z.L. Zorica, M.V. Sataric, D.C.D. Jovalekic, N.Z. Romcevic, Temperature-dependent complex impedance, electrical conductivity and dielectric studies of MFe2O4 (M= Mn, Ni, Zn) ferrites prepared by sintering of mechanochemical synthesized nanopowders. J. Mater. Sci. Mater. Electron. 26, 1291–1303 (2015)

    Article  CAS  Google Scholar 

  33. R.K. Panda, D. Behera, Investigation of electric transport behavior of bulk CoFe2O4 by complex impedance spectroscopy. J. Alloys Compd. 587, 481–486 (2014)

    Article  CAS  Google Scholar 

  34. P. Kumar, S. Pathak, A. Singh, H. Khanduri, G.A. Basheed, L. Wang, R.P. Pant, Microwave spin resonance investigation on the effect of the post-processing annealing of CoFe2O4 nanoparticles. Nanoscale Adv. 2, 1939–1948 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. K.L. Routray, D. Behera, Enhancement in conductivity and dielectric properties of rare-earth (Gd 3+) substituted nano-sized CoFe2O4. J. Mater. Sci. Mater. Electron. 29, 14248–14260 (2018)

    Article  CAS  Google Scholar 

  36. K.L. Routray, S. Saha, D. Sanyal, D. Behera, Role of rare-earth (Nd3+) ions on structural, dielectric, magnetic and Mossbauer properties of nano-sized CoFe2O4: useful for high frequency application. MRX 6(2), 026107 (2018)

    Google Scholar 

  37. S. Karmakar, B. Panda, B. Sahoo, K.L. Routray, S. Varma, D. Behera, A study on optical and dielectric properties of Ni-ZnO nanocomposite. Mater. Sci. Semicond. Process. 88, 198–206 (2018)

    Article  CAS  Google Scholar 

  38. K.L. Routray, S. Saha, D. Behera, DC electrical resistivity, dielectric, and magnetic studies of rare-earth (Ho3+) substituted nano-sized CoFe2O4. Phys. Status Solidi B 256(8), 1800676 (2019)

    Article  Google Scholar 

  39. L. Shao, A. Sun, Y. Zhang, L. Yu, N. Suo, Z. Zuo, Microstructure, XPS and magnetic analysis of Al-doped nickel–manganese–cobalt ferrite. J. Mater. Sci. Mater. Electron. 32, 20474–20488 (2021)

    Article  CAS  Google Scholar 

  40. Z. Huang, F. Tang, L. Zhang, Morphology control and texture of Fe3O4 nanoparticle-coated polystyrene microspheres by ethylene glycol in forced hydrolysis reaction. Thin Solid Films 471(1–2), 105–112 (2005)

    Article  CAS  Google Scholar 

  41. P. Scherrer, Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachr. Ges. Wiss. Göttingen. J. Encapsulation Adsorpt. Sci. 2, 96–100 (1918)

  42. T. Amutha, M. Rameshbabu, S. Muthupandi, K. Prabha, Theoretical comparison of lattice parameter and particle size determination of pure tin oxide nanoparticles from powder X-ray diffraction. Mater. Today: Proc. 49, 2624–2627 (2022)

    CAS  Google Scholar 

  43. V.D. Ippolito, G.B. Andreozzi, D. Bersani, P.P. Lottici, Raman fingerprint of chromate, aluminate and ferrite spinels. J. Raman Spectrosc. 46(12), 1255–1264 (2015)

    Article  Google Scholar 

  44. M. Testa-Anta, M.A. Ramos-Docampo, M. Comesaña-Hermo, B. Rivas-Murias, V. Salgueiriño, Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for bio-related applications. Nanoscale Adv. 1(6), 2086–2103 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. C. Murugesan, G. Chandrasekaran, Impact of Gd 3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5(90), 73714–73725 (2015)

    Article  CAS  Google Scholar 

  46. M.A.G. Soler, T.F.O. Melo, S.W. Da Silva, E.C.D. Lima, A.C.M. Pimenta, V.K. Garg, A.C. Oliveira, P.C. Morais, Structural stability study of cobalt ferrite-based nanoparticle using micro Raman spectroscopy. J. Magn. Magn. 272, 2357–2358 (2004)

    Article  Google Scholar 

  47. M. Hashim, S. Kumar, S.E. Shirsath, R.K. Kotnala, J. Shah, R. Kumar, Synthesis and characterizations of Ni2+ substituted cobalt ferrite nanoparticles. Mater. Chem. Phys.Chem. Phys. 139(2–3), 364–374 (2013)

    Article  CAS  Google Scholar 

  48. S. Larumbe, C. Gomez-Polo, J.I. Pérez-Landazábal, A. García-Prieto, J. Alonso, M.L. Fdez-Gubieda, D. Cordero, J. Gómez, Ni doped Fe3O4 magnetic nanoparticles. J. Nanosci. Nanotechnol.Nanotechnol. 12(3), 2652–2660 (2012)

    Article  CAS  Google Scholar 

  49. M. Hashim, S.E. Shirsath, S. Kumar, R. Kumar, A. Roy, J. Shah, R.K. Kotnala, Preparation and characterization chemistry of nano-crystalline Ni–Cu–Zn ferrite. J. Alloys Compd. 549, 348–357 (2013)

    Article  CAS  Google Scholar 

  50. S.A. Makhlouf, Magnetic properties of Co3O4 nanoparticles. J. Magn. Magn. Mater. 246(1–2), 184–190 (2002)

    Article  CAS  Google Scholar 

  51. P.F. Winkler, D. Kleppner, T. Myint, F.G. Walther, Magnetic moment of the proton in Bohr magnetons. Phys. Rev. ARev. A 5(1), 83 (1972)

    Article  Google Scholar 

  52. J. Garcıa-Otero, A.J. Garcıa-Bastida, J. Rivas, Influence of temperature on the coercive field of non-interacting fine magnetic particles. J. Magn. Magn. Mater. 189(3), 377–383 (1998)

    Article  Google Scholar 

  53. S.P. Kharat, S.K. Gaikwad, B.G. Baraskar, D. Das, R.C. Kambale, Y.D. Kolekar, C.V. Ramana, Enhanced magnetoelectric effect in lead-free piezoelectric BaZr0.2Ti0.8O3−0.5Ba0.7Ca03TiO3 and Fe-rich magnetostrictive Co0.8Fe2.2-xDyxO4 nanocomposites for energy harvesting applications. MSEB 291, 116363 (2023)

    Article  CAS  Google Scholar 

  54. H.M. Zaki, AC conductivity and frequency dependence of the dielectric properties for copper doped magnetite. Phys. B: Condens. Matter. 363(1–4), 232–244 (2005)

    Article  CAS  Google Scholar 

  55. S. Sikiru, N. Yahya, H. Soleimani, A.M. Ali, Y. Afeez, Impact of ionic-electromagnetic field interaction on Maxwell-Wagner polarization in porous medium. J. Mol. Liq. 318, 114039 (2020)

    Article  CAS  Google Scholar 

  56. S.I. Ahmad, Nano cobalt ferrites: doping, structural, low-temperature, and room temperature magnetic and dielectric properties—a comprehensive review. J. Magn. Magn. Mater. 169840 (2022)

  57. K.L. Routray, S. Saha, D. Behera, Nanosized CoFe2O4-graphene nanoplatelets with massive dielectric enhancement for high frequency device application. MSEB 257, 114548 (2020)

    Article  CAS  Google Scholar 

  58. K.M. Srinivasamurthy, A. El-Denglawey, K. Manjunatha, M.C. Oliveira, E. Longo, S.R. Lázaro, R.A.P. Ribeiro, Observation of dielectric dispersion and relaxation behavior in Ni 2+-substituted cobalt ferrite nanoparticles. J. Mater. Chem. C 10(9), 3418–3428 (2022)

    Article  CAS  Google Scholar 

  59. E.A. Fitzgerald, Y.-H. Xie, D. Monroe, P.J. Silverman, J.M. Kuo, A.R. Kortan, F.A. Thiel, B.E. Weir, Relaxed GexSi1−x structures for III–V integration with Si and high mobility two-dimensional electron gases in Si. J. Vac. Sci. 10(4), 1807–1819 (1992)

    CAS  Google Scholar 

  60. Z. Wang, M. Cao, Z. Yao, Z. Song, G. Li, W. Hu, H. Hao, H. Liu, Dielectric relaxation behavior and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives. Ceram. Int. 40(9), 14127–14132 (2014)

    Article  CAS  Google Scholar 

  61. R.K. Panda, R. Muduli, D. Behera, Electric and magnetic properties of Bi substituted cobalt ferrite nanoparticles: evolution of grain effect. J. Alloys Compd. 634, 239–245 (2015)

    Article  CAS  Google Scholar 

  62. A.P. Amaliya, S. Anand, S. Pauline, Investigation on structural, electrical and magnetic properties of titanium substituted cobalt ferrite nanocrystallites. J. Magn. Magn. 467, 14–28 (2018)

    Article  CAS  Google Scholar 

  63. P.A. Vinosha, A. Manikandan, R. Ragu, A. Dinesh, K. Thanrasu, Y. Slimani, A. Baykal, B. Xavier, Impact of nickel substitution on structure, magneto-optical, electrical and acoustical properties of cobalt ferrite nanoparticles. J. Alloys Compd. 857, 157517 (2021)

    Article  CAS  Google Scholar 

  64. I. Coondoo, N. Panwar, R. Vidyasagar, A.L. Kholkin, Defect chemistry and relaxation processes: effect of an amphoteric substituent in lead-free BCZT ceramics. Phys. Chem. Chem. Phys. 18(45), 31184–31201 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunirmal Saha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, B., Routray, K.L., Saha, S. et al. Investigation of Substitution of Nickel Cations in Cobalt Ferrite (CoFe2O4) Nanoparticles and Their Influence on Frequency and Temperature Dependent Dielectric and Magnetodielectric Properties. Trans. Electr. Electron. Mater. 25, 232–246 (2024). https://doi.org/10.1007/s42341-024-00510-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-024-00510-x

Keywords

Navigation