Skip to main content
Log in

Structural, optical, and magnetic properties of non-stoichiometric lithium substituted magnesium ferrite nanoparticles for multifunctional applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present research article, structural, optical, and magnetic properties along with Curie temperature of lithium substituted magnesium ferrite nanoparticles, Mg0.5+xLi1−2xFe2O4 (0 ≤ x ≤ 0.35) have been reported. The nanomaterial was prepared successfully using chemical-based citrate precursor sol–gel method and annealed at 550 °C. The X-ray diffraction analysis of the prepared nanomaterials confirms the formation of cubic spinel structure. The W–H plots were used to calculate crystal structure and lattice strain. The crystallite size was found to be 24 nm, 78 nm, and 50 nm, respectively, for three composition. The lattice strain was found to decrease and lattice constant was found to increase as the molar concentration of Li ion increases. The EDS measurements confirmed the presence of Mg, Fe, and oxygen. Functional group was measured using FTIR in the range of wave number 1000–400 cm−1 which confirms spinel structure. SEM are used for grain size determination with surface morphology analysis and found agglomerated nanocrystalline of different sizes. The optical properties were measured using UV/Vis/NIR and photoluminescence (PL) spectrometer. The energy bandgap was found 2.5 eV, 1.98 eV, and 2.41 eV, respectively, for the three prepared nanomaterials. While enhancement in photoluminescence spectra measured using PL spectrometer observed with decrease in lithium concentration. The magnetic properties were measured using vibrating sample magnetometer. The magnetic parameters like saturation magnetization, coercivity, and anisotropic constants were found to be increasing with the decrease in lithium ion concentration (Ms 11.63 emu/g–16.24 emu/g, Hc 110.81Oe–156.67Oe and (1342.41 to 2650.33). This non-stoichiometric structure was observed to affect the Curie temperature from 479 °C to 454 °C which often provides the possibility of this nanomaterial for broad range of applications in memory devices, isolators, circulator, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.M. Smith, S. Nie, Acc. Chem. Res. 43(2), 190–200 (2010)

    Article  CAS  Google Scholar 

  2. L.E. Brus, J. Chem. Phys. 80, 4403–4409 (1984)

    Article  CAS  Google Scholar 

  3. G. Ali, S.A. Siddiqi, S.M. Ramay, S. Atiq, M. Saleem, Int. J. Miner. Metall. Mater. 20(2), 166–171 (2013)

    Article  CAS  Google Scholar 

  4. M. Fechner, I.V. Maznichenko, S. Ostanin, A. Ernst, J. Henk, P. Bruno, I. Mertig, Phys. Rev. B 78, 212406 (2008)

    Article  Google Scholar 

  5. A. Eftekhari, J. Power Sources 126, 221 (2004)

    Article  CAS  Google Scholar 

  6. R.P. Patil, B.V. Jadhav, M.R. Kadam, D.R. Patil, P.P. Hankare, Mater. Focus 5, 46-50 (2016). https://doi.org/10.1166/mat.2016.1290

    Article  CAS  Google Scholar 

  7. S.S. Bellad, S.C. Watawe, B.K. Chougule, J. Magn. Magn. Mater. 195, 57–64 (1999)

    Article  CAS  Google Scholar 

  8. M. Bahgat, F.E. Farghaly, S.M. AbdelBasir, O.A. Fouad, Mater. Process. Technol. 183, 117–121 (2007)

    Article  CAS  Google Scholar 

  9. I. Soibam, S. Phanjoubam, L. Radhapiyari, Phys. B 405, 2181–2184 (2010)

    Article  CAS  Google Scholar 

  10. R. Cheruku, G. Govindaraj, L. Vijayan. Mater. Chem. Phys. 146, 389–398 (2014)

    Article  CAS  Google Scholar 

  11. A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasud, J. Mater. Sci. 30, 5854–5865 (2019)

    CAS  Google Scholar 

  12. S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami, H. Sobati, M. Eghbali-Arani, Rahimi-Nasrabadi. J. Mater. Sci. 30, 6902–6909 (2019)

    CAS  Google Scholar 

  13. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, J. Mater. Sci. 27, 11691–11697 (2016)

    CAS  Google Scholar 

  14. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hossienpour-Mashkani, J. Mater. Sci. 26, 9776–9781 (2015)

    CAS  Google Scholar 

  15. S.M. Peymani-Motlagh, N. Moeinian, M. Rostami et al., J. Rare Earths 37, 1288–1295 (2019)

    Article  Google Scholar 

  16. J. Mater. Sc. Mater. Electron. 30, 19691–19702 (2019)

  17. M. Rostami, M. Rahimi-Nasrabadi, M.R. Ganjali, F. Ahmadi, A.F. Shojari, M.D. Rafiee, J. Mater. Sci. 52, 7008–7016 (2017)

    Article  CAS  Google Scholar 

  18. A. Ataie, I.R. Harris, C.B. Ponton, J. Mater. Sci. 30, 1429 (1995)

    Article  CAS  Google Scholar 

  19. M.M. Hessien, M.M. Rashad, K. El-Barawy, J. Magn. Magn. Mater. 320, 336 (2008)

    Article  CAS  Google Scholar 

  20. C. Surig, K.A. Hempel, D. Bonnenborg, IEEE Trans. Magn. 30, 4092 (1994)

    Article  Google Scholar 

  21. R.K. Kotnala et al., Science Direct Sens. Actuators B 129, 909–914 (2008)

    Google Scholar 

  22. R.K. Kotnala, J. Shah, Int. J. Energy Res. 40, (2016). https://doi.org/10.1002/er.3545

  23. G. Yadav, N. Kumar, Jyoti et al., J. Mater. Sci. Eng. Sci. (JMSME) 3, 183–186 (2016)

  24. M. Abdullah, K. Majid, S. K. Moosvi, Mater. Res. Innov. (2017). https://doi.org/10.1080/14328917.217.1391457

  25. R.K. Singh, C. Upaadhyay, S. Lyeak, A. Yadav, Int. J. Sci. Eng. Tech. (I-JEST), Special issue Nano iron oxides and composites: recent avances in Scientific and technological aspects, 2(8), 104–109 (2010)

  26. N. Singh, A. Agarwal, S. Sanghi, J. Alloys Compd. 509, 7543–7548 (2011)

    Article  CAS  Google Scholar 

  27. Xu Ping, X. Han, M. Wang, J. Phys. Chem. C 111, 5866–5870 (2007)

    Article  Google Scholar 

  28. P. Hajasharif, K. Ramesh, S.Sivakumar, P. Sivagurunathan, Int. J. Innov. Technol. Exploring Eng. (IJITEE). ISSN: 2278–3075 (2019)

  29. R.G. Kharabe, R.S. Devan, C.M. Kanamadi, B.K. Chougule, Smart Mater. Struct. 15, N36 (2006)

    Article  CAS  Google Scholar 

  30. M. Fid, I. Ahmad, S. Aman, M. Kanwal, G. Murtaza, I. Alia, I. Ahmad, M. Ishfaq, J. Ovon. Res. 11, 1–10 (2015)

    Google Scholar 

  31. E.E. Ateia, S.K. AbdelAal, A. Allah, J. Mater. Sci. 29, 1406–1489 (2018). https://doi.org/10.1007/s10854-017-8057-1

    Article  CAS  Google Scholar 

  32. A. Pradeep, G. Chandrasekaran, Mater. Lett. 60, 371–374 (2006)

    Article  CAS  Google Scholar 

  33. An Investigation of TiO2-ZnFe2O4 Nanocomposites for Visible Light Photo catalysis by Jeremy Wade, A thesis submitted to Department of Electrical Engineering; College of Engineering, University of South Florida, Semantic scholar, March 24 (2005)

  34. M.P. Ghosh, S. Sharma, H.K. Satyapal, K. Tanbir, R.K. Singh, S. Mukherje, Mater. Chem. Phys. 241, 122383 (2020)

  35. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi. 15, 627–637 (1966)

    Article  CAS  Google Scholar 

  36. H. El Foulani, A. Aamouche, F. Mohseni, J.S. Amaral, D.M. Tobaldi, R.C. Pullar, J. Alloys Compd. 774, 1250–1259 (2019)

    Article  Google Scholar 

  37. M. Almessiere, A.D. Korkmaz, Y. Slimani, M. Nawaz, S. Ali, A. Baykal, Ceram. Int. 45, 3449–3458 (2019)

    Article  CAS  Google Scholar 

  38. K. Santa, C. Jayanthi, R.K. Kotnala, Phys. Rev. B 79, 2009 (2009)

    Google Scholar 

  39. J. Kaur, J. Shah, R.K. Kotnala, K.C. Verma, Ceramic Int. 38, 5563–5570 (2012)

  40. S. Prasad, N.S. Gajbhiye, J. Alloys Compd. 265, 87–92 (1998)

    Article  CAS  Google Scholar 

  41. E. Ateia, M.A. Ahmed, R.M. Ghouniem, Solid State Sci. 31, 1–8 (2014)

    Article  Google Scholar 

  42. S.K. Pradhan, S. Sain, H. Dutta, ISRN Ceram. (2011). https://doi.org/10.5402/2011/194575

    Article  Google Scholar 

  43. Y. Zhou, J.H. Morais-Cabral, A. Kaufman, R. MacKinnon, Nature 414, 43–48 (2001)

    Article  CAS  Google Scholar 

  44. M. AsifIqbal, M.U. Islam, I. Ali, M.A. Khan, S.M. Ramay, M.H. Khan, M.K. Mehmood, J. Alloys Compd. (2016) https://doi.org/10.1016/j.jallcom.2016.09.049

  45. I. Panneer, R.N. Muthuselvam, Bhowmik. J. Magn. Magn. Mater. 322, 767–776 (2010)

    Article  Google Scholar 

  46. E.E. Ateia, S.K. Abdel-Aal, A. Abd Allah, J. Mater. Sci. (2017). https://doi.org/10.1007/s10854-017-8057-1

    Article  Google Scholar 

  47. S. Manouchehril, S. Taghi, M. Benehil, M.H. Yousefil, J. Nano Res. 43, 38–45 (2016)

    Article  Google Scholar 

  48. E.E. Ateia, G. Abdelatif, M.A. Ahmed, M. AbdAllaMahmoud, J. Inorg. Organomet. Poly. Mater 25, 81–90 (2015)

    Article  Google Scholar 

  49. A. Lakshman, P.S.V. Subba Rao, B. Pvatheeswara Rao, K.H. Rao, J. Phys. D 38, 673–678 (2005)

    Article  CAS  Google Scholar 

  50. T. Furubayashi, I. Nakatani, Mixed spinel structure. Phys. Rev. B 63(4), 184108 (2001)

    Google Scholar 

  51. S.S. Khot, N.S. Shinde, B.P. Ladgaonkar, B.B. Kale, S.C. Watawe, Adv. Appl. Sci. Res. 2(4), 460–471 (2011)

    CAS  Google Scholar 

  52. E.E. Ateia, A.T. Mohamed, Mater. Sci. 28, 10035–10041 (2017)

    CAS  Google Scholar 

  53. R.K. Singh, R.K. Kotnala, J. Shah, Mater. Sci. Eng. B (2016). https://doi.org/10.1016/J.mseb2016.03.011

    Article  Google Scholar 

  54. Curie temperature of isolators and circulators (Skyworks Solutions, Inc, 2011), https://www.skyworksinc.com

Download references

Acknowledgements

The authors are thankful to Department of Education, Govt. of Bihar and Aryabhatta Knowledge University, which has been very supportive in establishment and functioning of the Aryabhatta Center for Nanoscience and Nanotechnology, Aryabhatta Knowledge University, Patna, Bihar, India. Authors are thankful to Dr. M. Kar and group at IIT Patna for EDX measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kr Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Singh, R.K. & Satyapal, H.K. Structural, optical, and magnetic properties of non-stoichiometric lithium substituted magnesium ferrite nanoparticles for multifunctional applications. J Mater Sci: Mater Electron 31, 9231–9241 (2020). https://doi.org/10.1007/s10854-020-03454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03454-z

Navigation