Skip to main content
Log in

Effects of Annealing on the Microstructure and Thermoelectric Properties of Half-Heusler MNiSn (M = Ti, Zr, Hf)

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Half-Heusler MNiSn (M = Ti, Zr, Hf) shows a good thermoelectric performance in a medium temperature range of 500–1100 K. In this study, we investigate the effect of annealing on the microstructure and thermoelectric properties of half-Heusler Ti0.26Zr0.37Hf0.37NiSn. The Ti0.26Zr0.37Hf0.37NiSn composition which was designed to improve phonon scattering via mass difference and strain fluctuation. The samples were fabricated through arc melting and then annealed at 1173 K for 24–216 h. The as-cast sample showed a microstructure in which the Ti-rich and Ti-poor half-Heuslers were mixed with some secondary phases like Hf, Sn, and Ti6Sn5. The secondary phases disappeared, and the difference in the Ti fraction between the Ti-rich and Ti-poor half-Heuslers was reduced with increasing annealing time. In other words, the samples become homogeneous with annealing, leading to the reduction of the anti-site defects commonly observed in MNiSn alloys. This was confirmed by the increase of the band gap calculated from the Seebeck coefficient. The electrical conductivity decreased, and the Seebeck coefficient increased as the annealing time increased. This is attributed to the decrease of the carrier concentration caused by the reduction of the anti-site defects. The figure-of-merit value for the sample annealed for 216 h reached 0.74 at 773 K, showing an increase of approximately 20% compared with that of the as-cast sample.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.R.K. Nanda, and I. Dasgupta, Electronic structure and magnetism in half-heusler compounds. J. Phys. Condens. Matter 15, 7307 (2003).

    Article  CAS  Google Scholar 

  2. B. Lenoir, H. Scherrer, and T. Caillat, An overview of recent developments for BiSb alloys. Semicond. Semimetals 69, 101 (2001).

    Article  CAS  Google Scholar 

  3. D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M.G. Kanatzidis, CsBi4Te6: a high-performance thermoelectric material for low-temperature applications. Science 287, 1024 (2000).

    Article  CAS  Google Scholar 

  4. S.-T. Kim, J.M. Park, K.-I. Park, S.-E. Chun, H.S. Lee, P.-P. Choi, and S. Yi, Enhanced thermoelectric composite performance from mesoporous carbon additives in a commercial Bi0.5Sb1.5Te3 matrix. J. Mater. Sci. Technol. 94, 175 (2021).

    Article  Google Scholar 

  5. P. Ying, X. Liu, C. Fu, X. Yue, H. Xie, X. Zhao, W. Zhang, and T. Zhu, High performance α-MgAgSb thermoelectric materials for low temperature power generation. Chem. Mater. 27, 909 (2015).

    Article  CAS  Google Scholar 

  6. M.V. Fischetti and S.E. Laux, Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234 (1996).

    Article  CAS  Google Scholar 

  7. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554 (2008).

    Article  CAS  Google Scholar 

  8. C. Jung, B. Dutta, P. Dey, S. Jeon, S. Han, H.-M. Lee, J.-S. Park, S.-H. Yi, and P.-P. Choi, Tailoring nanostructured NbCoSn-based thermoelectric materials via crystallization of an amorphous precursor. Nano Energy 80, 105518 (2021).

    Article  CAS  Google Scholar 

  9. B.C. Sales, D. Mandrus, and R.K. Williams, Filled Skutterudite Antimonides: a new class of thermoelectric materials. Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  10. M. Schrade, K. Berland, S.N.H. Eliassen, M.N. Guzik, C. Echevarria-Bonet, M.H. Sørby, P. Jenuš, B.C. Hauback, R. Tofan, and A.E. Gunnæs, The role of grain boundary scattering in reducing the thermal conductivity of Polycrystalline XNiSn (X= Hf, Zr, Ti) Half-Heusler Alloys. Sci. Rep. 7, 1 (2017).

    Article  CAS  Google Scholar 

  11. W. Jeitschko, Transition Metal Stannides with MgAgAs and MnCu2Al type structure. Metall. Trans-Actions 1, 3159–3162 (1970).

    Article  CAS  Google Scholar 

  12. Z. Ren, Y. Lan, and Q. Zhang, Advanced Thermoelectrics: Materials, Contacts, Devices, and Systems (CRC Press, 2017), pp. 297–325.

  13. F.G. Aliev, N.B. Brandt, V.V. Moshchalkov, V.V. Kozyrkov, R.V. Skolozdra, and A.I. Belogorokhov, Gap at the Fermi level in the intermetallic vacancy system RBiSn (R= Ti, Zr, Hf). Z. Für Phys. B 75, 167 (1989).

    Article  CAS  Google Scholar 

  14. J. Yang, H. Li, T. Wu, W. Zhang, L. Chen, and J. Yang, Evaluation of half-heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv. Funct. Mater. 18, 2880 (2008).

    Article  CAS  Google Scholar 

  15. K. Kirievsky, Y. Gelbstein, and D. Fuks, Phase separation and antisite defects in the thermoelectric TiNiSn Half-Heusler Alloys. J. Solid State Chem. 203, 247 (2013).

    Article  CAS  Google Scholar 

  16. P. Qiu, J. Yang, X. Huang, X. Chen, and L. Chen, Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half-heusler alloys. Appl. Phys. Lett. 96, 152105 (2010).

    Article  Google Scholar 

  17. G. Rogl, P. Sauerschnig, Z. Rykavets, V.V. Romaka, P. Heinrich, B. Hinterleitner, A. Grytsiv, E. Bauer, and P. Rogl, (V, Nb)-Doped Half Heusler Alloys Based on Ti, Zr, Hf NiSn with High ZT. Acta Mater. 131, 336 (2017).

    Article  CAS  Google Scholar 

  18. J.P.A. Makongo, D.K. Misra, X. Zhou, A. Pant, M.R. Shabetai, X. Su, C. Uher, K.L. Stokes, and P.F.P. Poudeu, Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-heusler alloys. J. Am. Chem. Soc. 133, 18843 (2011).

    Article  CAS  Google Scholar 

  19. M. Gürth, G. Rogl, V.V. Romaka, A. Grytsiv, E. Bauer, and P. Rogl, Thermoelectric high ZT half-heusler alloys Ti1− X− YZrxHfyNiSn (0≤ X≤ 1; 0≤ Y≤ 1). Acta Mater. 104, 210 (2016).

    Article  Google Scholar 

  20. A. Page, A. Van der Ven, P.F.P. Poudeu, and C. Uher, Origins of phase separation in thermoelectric (Ti, Zr, Hf) NiSn Half-Heusler alloys from first principles. J. Mater. Chem. A 4, 13949 (2016).

    Article  CAS  Google Scholar 

  21. T. Katayama, S.W. Kim, Y. Kimura, and Y. Mishima, The effects of quaternary additions on thermoelectric properties of TiNiSn-based half-heusler alloys. J. Electron. Mater. 32, 1160 (2003).

    Article  CAS  Google Scholar 

  22. K. Gałązka, S. Populoh, L. Sagarna, L. Karvonen, W. Xie, A. Beni, P. Schmutz, J. Hulliger, and A. Weidenkaff, Phase formation, stability, and oxidation in (Ti, Zr, Hf) NiSn half-heusler compounds. Phys. Status Solidi 211, 1259 (2014).

    Article  Google Scholar 

  23. C. Uher, J. Yang, S. Hu, D.T. Morelli, and G.P. Meisner, Transport properties of pure and doped MNiSn (M= Zr, Hf). Phys. Rev. B 59, 8615 (1999).

    Article  CAS  Google Scholar 

  24. S.-H. Wang, H.-M. Cheng, R.-J. Wu, and W.-H. Chao, Structural and thermoelectric properties of HfNiSn half-heusler thin films. Thin Solid Films 518, 5901 (2010).

    Article  CAS  Google Scholar 

  25. H. Hohl, A.P. Ramirez, W. Kaefer, K. Fess, C. Thurner, C. Kloc, and E. Bucher, A New Class of Materials with Promising Thermoelectric Properties: MNiSn (M= Ti, Zr, Hf), MRS Online Proc. Libr. 478, (1997).

  26. Y. Tang, X. Li, L.H.J. Martin, E.C. Reyes, T. Ivas, C. Leinenbach, S. Anand, M. Peters, G.J. Snyder, and C. Battaglia, Impact of Ni content on the thermoelectric properties of Half-Heusler TiNiSn. Energy Environ. Sci. 11, 311 (2018).

    Article  CAS  Google Scholar 

  27. Y. Gelbstein, N. Tal, A. Yarmek, Y. Rosenberg, M.P. Dariel, S. Ouardi, B. Balke, C. Felser, and M. Köhne, Thermoelectric properties of spark plasma sintered composites based on TiNiSn half-heusler alloys. J. Mater. Res. 26, 1919 (2011).

    Article  CAS  Google Scholar 

  28. S. Populoh, M.H. Aguirre, O.C. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, High figure of merit in (Ti, Zr, Hf) NiSn Half-Heusler alloys. Scr. Mater. 66, 1073 (2012).

    Article  CAS  Google Scholar 

  29. S. Chen, K.C. Lukas, W. Liu, C.P. Opeil, G. Chen, and Z. Ren, Effect of Hf concentration on thermoelectric properties of nanostructured N-type Half-heusler materials HfxZr1–XNiSn0.99Sb0.01. Adv. Energy Mater. 3, 1210 (2013).

    Article  CAS  Google Scholar 

  30. A.N. Gandi and U. Schwingenschlögl, Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) Half-Heusler Alloys. Phys. Chem. Chem. Phys. 18, 14017 (2016).

    Article  CAS  Google Scholar 

  31. H.J. Goldsmid, and J.W. Sharp, Estimation of the thermal band gap of a semiconductor from seebeck measurements. J. Electron. Mater. 28, 869 (1999).

    Article  CAS  Google Scholar 

  32. Y. Kimura and Y.-W. Chai, Ordered structures and thermoelectric properties of MNiSn (M= Ti, Zr, Hf)-based half-heusler compounds affected by close relationship with heusler compounds. JOM 67, 233 (2015).

    Article  CAS  Google Scholar 

  33. G.J. Snyder and E.S. Toberer, Complex thermoelectric materials, in materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group (World Scientific, 2011), pp. 101–110

  34. C. Fu, H. Xie, Y. Liu, T.J. Zhu, J. Xie, and X.B. Zhao, Thermoelectric properties of FeVSb half-heusler compounds by levitation melting and spark plasma sintering. Intermetallics 32, 39 (2013).

    Article  CAS  Google Scholar 

  35. N. Stojanovic, D.H.S. Maithripala, J.M. Berg, and M. Holtz, Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann-Franz law. Phys. Rev. B 82, 75418 (2010).

    Article  Google Scholar 

  36. H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, Characterization of Lorenz number with seebeck coefficient measurement. APL Mater. 3, 41506 (2015).

    Article  Google Scholar 

  37. B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J.M. Mendoza, O.D. Restrepo, X. Ruan, and G. Chen, First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon. Europhys. Lett. 109, 57006 (2015).

    Article  Google Scholar 

  38. X. Li and R. Yang, Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces. Phys. Rev. B 86, 54305 (2012).

    Article  Google Scholar 

  39. O. Appel, T. Zilber, S. Kalabukhov, O. Beeri, and Y. Gelbstein, Morphological effects on the thermoelectric properties of Ti0.3Zr0.35Hf0.35Ni1+ δSn alloys following phase separation. J. Mater. Chem. C 3, 11653 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1A4A200165811).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seonghoon Yi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, G., Lee, H.S. & Yi, S. Effects of Annealing on the Microstructure and Thermoelectric Properties of Half-Heusler MNiSn (M = Ti, Zr, Hf). J. Electron. Mater. 51, 3485–3494 (2022). https://doi.org/10.1007/s11664-022-09627-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09627-2

Keywords

Navigation