Skip to main content
Log in

Synthesis and Thermoelectric Properties of ZrxTi1−xNiSn0.98Sb0.02 n-Type Half-Heusler Materials

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Hf-free ZrxTi1−xNiSn0.98Sb0.02 (x = 0.25, 0.5, 0.75) n-type half-Heusler (HH) thermoelectric materials were synthesized by a serial processing method including induction melting (IM), annealing, ball milling, and spark plasma sintering (SPS). For comparison, a Hf-containing half-Heusler Hf0.25Zr0.25Ti0.5NiSn0.98Sb0.02 ingot was also alloyed by arc melting, and the effects of Hf on the thermoelectric properties were estimated. The ZrxTi1−xNiSn0.98Sb0.02 HH materials were nearly pure according to the x-ray diffraction analysis, but microscopic investigation revealed impurity phase inclusions of unalloyed Sn, Zr, and Ti. The power factor (PF) of the Hf-free HH materials reached the maximum value of 4.31 mWm−1 K−2 at 823 K in Zr0.75Ti0.25NiSn0.98Sb0.02, which was higher than Hf0.25Zr0.25Ti0.5NiSn0.98Sb0.02 (4.01 mWm−1 K−2 at 773 K) in this study. However, the thermal conductivity of the Hf-free samples was significantly higher, by which the maximum dimensionless figure of merit was slightly lower (ZTmax = 0.92 in Zr0.75Ti0.25NiSn0.98Sb0.02 at 873 K) than that of Hf0.25Zr0.25Ti0.5NiSn0.98Sb0.02 (ZTmax = 1.03 at 873 K). The thermal conductivity was decomposed into lattice and electronic contributions, and the possible correlation with Ni off-stoichiometry is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Champier, Energy Convers Manag. 140, 167 (2017).

    Article  Google Scholar 

  2. L.E. Bell, Science 321, 1457 (2008).

    Article  CAS  Google Scholar 

  3. S.B. Riffat, and X. Ma, Appl. Therm. Eng. 23, 913 (2003).

    Article  Google Scholar 

  4. M. Gürth, G. Rogl, V.V. Romaka, A. Grytsiv, E. Bauer, and P. Rogl, Acta Mater. 104, 210 (2016).

    Article  Google Scholar 

  5. G. Joshi, X. Yan, H. Wang, W. Liu, G. Chen, and Z. Ren, Adv. Energy. Mater. 1, 643 (2011).

    Article  CAS  Google Scholar 

  6. M. Schwall, and B. Balke, Phys. Chem. Chem. Phys. 15, 1868 (2013).

    Article  CAS  Google Scholar 

  7. T. Zhu, C. Fu, H. Xie, Y. Liu, and X. Zhao, Adv. Energy Mater. 5, 1500588 (2015).

    Article  Google Scholar 

  8. A. Page, A. Van der Ven, P.F.P. Poudeu, and C. Uher, J. Mater. Chem. A 4, 13949 (2016).

    Article  CAS  Google Scholar 

  9. W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, and T.M. Tritt, Nanomaterials 2, 379 (2012).

    Article  CAS  Google Scholar 

  10. F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser, Semicond. Sci. Technol. 27, 063001 (2012).

    Article  Google Scholar 

  11. S. Ogut, and K.M. Rabe, Phys. Rev. B 51, 10443 (1995).

    Article  CAS  Google Scholar 

  12. C. Uher, J. Yang, S. Hu, D.T. Morrelli, and G.P. Meisner, Phys. Rev. B 59, 8615 (1999).

    Article  CAS  Google Scholar 

  13. L.D. Chen, X.Y. Huang, M. Zhou, X. Shi, and W.B. Zhang, J. Appl. Phys. 99, 064305 (2006).

    Article  Google Scholar 

  14. G. Joshi, T. Dahal, S. Chen, H.Z. Wang, J. Shiomi, G. Chen, and Z. Ren, Nano Energy 2, 82 (2013).

    Article  CAS  Google Scholar 

  15. O. Appel, M. Schwall, D. Mogilyansky, M. Kohne, B. Balke, and Y. Gelbstein, J. Electron. Mater. 42, 1340 (2013).

    Article  CAS  Google Scholar 

  16. L. Chen, S. Gao, X. Zeng, A. Mehdizadeh Dehkordi, T.M. Tritt, and S.J. Poon, Appl. Phys. Lett. 107, 041902 (2015).

    Article  Google Scholar 

  17. G. Rogl, P. Sauereschnig, Z. Rykavets, V.V. Romaka, P. Heinrich, B. Hinterleitner, A. Grytsiv, E. Bauer, and P. Rogl, Acta Mater. 131, 336 (2017).

    Article  CAS  Google Scholar 

  18. S. Chen, K.C. Lukas, W. Liu, C.P. Opeil, G. Chen, and Z. Ren, Adv. Energy Mater. 3, 1210 (2013).

    Article  CAS  Google Scholar 

  19. C. Yu, T.-J. Zhu, R.-Z. Shi, Y. Zhang, X.-B. Zhao, and J. He, Acta Mater. 57, 2757 (2009).

    Article  CAS  Google Scholar 

  20. N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj, B. Gahtori, A.K. Srivastava, M. Saravanan, and A. Dhar, Materialia 1, 168 (2018).

    Article  Google Scholar 

  21. Y. Liu, H. Xie, C. Fu, G.J. Snyder, X. Zhao, and T. Zhu, J. Mater. Chem. A 3, 22716 (2015).

    Article  CAS  Google Scholar 

  22. S. Populoh, M.H. Aguirre, O.C. Brunko, K. Galazka, Y. Lu, and A. Weidenkaff, Scripta Mater. 66, 1073 (2012).

    Article  CAS  Google Scholar 

  23. H. Hazama, M. Matsubara, R. Asahi, and T. Takeuchi, J. Appl. Phys. 110, 063710 (2011).

    Article  Google Scholar 

  24. S.A. Barczak, J. Buckman, R.I. Smith, A.R. Bakere, E. Don, I. Forbes, and J.-W.G. Bos, Materials 11, 536 (2018).

    Article  Google Scholar 

  25. W. Ren, H. Zhu, J. Mao, L. You, S. Song, T. Tong, J. Bao, J. Luo, Z. Wang, and Z. Ren, Adv. Electron. Mater. 5, 1900166 (2019).

    Article  Google Scholar 

  26. M. Schrade, K. Bereland, A. Kosinskiy, J.P. Heremans, and T.G. Finstad, J. Appl. Phys. 127, 045103 (2020).

    Article  CAS  Google Scholar 

  27. H.J. Goldsmid, Introduction to Thermoelectricity (Berlin: Springer, 2010), pp. 23–41.

    Book  Google Scholar 

  28. A. Katre, J. Carrete, and N. Mingo, J. Mater. Chem. A 4, 15940 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Korea Electrotechnology Research Institute (KERI) Primary research program through the National Research Council of Science & Technology (NST) funded by the Ministry of Science and ICT (MSIT) (Code Number 20-12-N0101-28, 20A01028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Jae Joo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joo, SJ., Son, JH., Lee, H.S. et al. Synthesis and Thermoelectric Properties of ZrxTi1−xNiSn0.98Sb0.02 n-Type Half-Heusler Materials. J. Electron. Mater. 50, 4178–4185 (2021). https://doi.org/10.1007/s11664-021-08938-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08938-0

Keywords

Navigation