Skip to main content
Log in

Effect of Nb Doping on Thermoelectric Properties of TiNiSn Half-Heusler Alloy Prepared by Microwave Method

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The inherent high thermal conductivity of TiNiSn half-Heusler (HH) alloy, as well as the long preparation cycle time and high cost of conventional preparation methods limited its commercial application. Herein, Ti1 – xNbxNiSn half-Heusler alloys with low lattice thermal conductivity were successfully prepared by microwave synthesis combined with rapid hot-pressing sintering, which significantly shortened the preparation cycle and ensured high density of TiNiSn half-Heusler alloys. The effects of Nb substitution at Ti sites on the composition distribution, thermal and electrical transport properties of Ti1 – xNbxNiSn half-Heusler samples were studied. The maximum ZT value of Ti0.9Nb0.1NiSn sample was 0.39 at 725 K due to the increase of power factor (PF) and the decrease of lattice thermal conductivity caused by the enhanced phonon scattering, which was about 204% higher than that of undoped TiNiSn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. C. Uher, J. Yang, S. Hu, D. Morelli, and G. Meisner, “Transport properties of pure and doped MNiSn (M = Zr, Hf),” Phys. Rev. B 59, 8615–8621 (1999). https://doi.org/10.1103/physrevb.59.8615

    Article  ADS  CAS  Google Scholar 

  2. C. Gayner and K. K. Kar, “Recent advances in thermoelectric materials,” Prog. Mater. Sci. 83, 330–382 (2016). https://doi.org/10.1016/j.pmatsci.2016.07.002

    Article  CAS  Google Scholar 

  3. G. Tan, L.-D. Zhao, and M. G. Kanatzidis, “Rationally designing high-performance bulk thermoelectric materials,” Chem. Rev. 116, 12123–12149 (2016). https://doi.org/10.1021/acs.chemrev.6b00255

    Article  CAS  PubMed  Google Scholar 

  4. G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater. 7, 105–114 (2008). https://doi.org/10.1038/nmat2090

    Article  ADS  CAS  PubMed  Google Scholar 

  5. S.-W. Kim, Yo. Kimura, and Yo. Mishima, “High temperature thermoelectric properties of TiNiSn-based half-Heusler compounds,” Intermetallics 15, 349–356 (2007). https://doi.org/10.1016/j.intermet.2006.08.008

    Article  CAS  Google Scholar 

  6. Yi. Sun, W. Qiu, L. Zhao, H. He, L. Yang, L. Chen, H. Deng, X. Shi, and J. Tang, “Defects engineering driven high power factor of ZrNiSn-based half-Heusler thermoelectric materials,” Chem. Phys. Lett. 755, 137770 (2020). https://doi.org/10.1016/j.cplett.2020.137770

    Article  CAS  Google Scholar 

  7. N. Jia, J. Cao, X. Tan, J. Dong, H. Liu, C. Tan, J. Xu, Q. Yan, X. Loh, and A. Suwardi, “Thermoelectric materials and transport physics,” Mater. Today Phys. 21, 100519 (2021). https://doi.org/10.1016/j.mtphys.2021.100519

    Article  CAS  Google Scholar 

  8. K. Kurosaki, T. Maekawa, H. Muta, and S. Yamanaka, “Effect of spark plasma sintering temperature on thermoelectric properties of (Ti, Zr, Hf)NiSn half-Heusler compounds,” J. Alloys Compd. 397, 296–299 (2005). https://doi.org/10.1016/j.jallcom.2005.01.028

    Article  CAS  Google Scholar 

  9. R. Yan, R. Xie, W. Xie, C. Shen, W. Li, B. Balke, S. Yoon, H. Zhang, and A. Weidenkaff, “Effects of doping Ni on the microstructures and thermoelectric properties of co-excessive NbCoSn half-Heusler compounds,” ACS Appl. Mater. Interfaces 13, 34533–34542 (2021). https://doi.org/10.1021/acsami.1c08127

    Article  CAS  PubMed  Google Scholar 

  10. C. Hu, K. Xia, C. Fu, X. Zhao, and T. Zhu, “Carrier grain boundary scattering in thermoelectric materials,” Energy Environ. Sci. 15, 1406–1422 (2022). https://doi.org/10.1039/d1ee03802h

    Article  CAS  Google Scholar 

  11. T. Ghosh, M. Dutta, D. Sarkar, and K. Biswas, “Insights into low thermal conductivity in inorganic materials for thermoelectrics,” J. Am. Chem. Soc. 144, 10099–10118 (2022). https://doi.org/10.1021/jacs.2c02017

    Article  CAS  PubMed  Google Scholar 

  12. X. Zhang, S. Li, B. Zou, P. Xu, Yi. Song, B. Xu, Yi. Wang, G. Tang, and S. Yang, “Significant enhancement in thermoelectric properties of half-Heusler compound TiNiSn by grain boundary engineering,” J. Alloys Compd. 901, 163686 (2022). https://doi.org/10.1016/j.jallcom.2022.163686

    Article  CAS  Google Scholar 

  13. A. Karati, M. Nagini, S. Ghosh, R. Shabadi, K. Pradeep, R. Mallik, B. Murty, and U. Varadaraju, “Ti2NiCoSnSb—A new half-Heusler type high-entropy alloy showing simultaneous increase in Seebeck coefficient and electrical conductivity for thermoelectric applications,” Sci. Rep. 9, 5331 (2019). https://doi.org/10.1038/s41598-019-41818-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. P. Makongo, D. K. Misra, X. Zhou, A. Pant, M. R. Shabetai, X. Su, C. Uher, K. L. Stokes, and P. F. Poudeu, “Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys,” J. Am. Chem. Soc. 133, 18843–18852 (2011). https://doi.org/10.1021/ja206491j

    Article  CAS  PubMed  Google Scholar 

  15. Ya. Gelbstein, N. Tal, A. Yarmek, Yo. Rosenberg, M. Dariel, S. Ouardi, B. Balke, C. Felser, and M. Köhne, “Thermoelectric properties of spark plasma sintered composites based on TiNiSn half-Heusler alloys,” J. Mater. Res. 26, 1919–1924 (2011). https://doi.org/10.1557/jmr.2011.107

    Article  ADS  CAS  Google Scholar 

  16. B. Balke, J. Barth, M. Schwall, G. H. Fecher, and C. Felser, “An alternative approach to improve the thermoelectric properties of half-Heusler compounds,” J. Electron. Mater. 40, 702–706 (2011). https://doi.org/10.1007/s11664-011-1517-0

    Article  ADS  CAS  Google Scholar 

  17. H. Xie, H. Wang, C. Fu, Yi. Liu, G. J. Snyder, X. Zhao, and T. Zhu, “The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials,” Sci. Rep. 4, 6888 (2014). https://doi.org/10.1038/srep06888

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. Karati, S. Mukherjee, R. C. Mallik, R. Shabadi, B. Murty, and U. Varadaraju, “Simultaneous increase in thermopower and electrical conductivity through Ta-doping and nanostructuring in half-Heusler TiNiSn alloys,” Materialia 7, 100410 (2019). https://doi.org/10.1016/j.mtla.2019.100410

    Article  CAS  Google Scholar 

  19. A. Karati and B. Murty, “Synthesis of nanocrystalline half-Heusler TiNiSn by mechanically activated annealing,” Mater. Lett. 205, 114–117 (2017). https://doi.org/10.1016/j.matlet.2017.06.068

    Article  CAS  Google Scholar 

  20. J. W. Lekse, T. J. Stagger, and J. A. Aitken, “Microwave metallurgy: Synthesis of intermetallic compounds via microwave irradiation,” Chem. Mater. 19, 3601–3603 (2007). https://doi.org/10.1021/cm0707410

    Article  CAS  Google Scholar 

  21. K. Biswas, S. Muir, and M. A. Subramanian, “Rapid microwave synthesis of indium filled skutterudites: An energy efficient route to high performance thermoelectric materials,” Mater. Res. Bull. 46, 2288–2290 (2011). https://doi.org/10.1016/j.materresbull.2011.08.058

    Article  CAS  Google Scholar 

  22. D. Baghurst, A. Chippindale, and D. M. P. Mingos, “Microwave syntheses for superconducting ceramics,” Nature 332, 311 (1988). https://doi.org/10.1038/332311a0

    Article  ADS  CAS  Google Scholar 

  23. Yo. Wang, W. Wang, H. Zhao, L. Bo, L. Wang, F. Li, M. Zuo, and D. Zhao, “Rapid microwave synthesis of Cu2Se thermoelectric material with high conductivity,” Funct. Mater. Lett. 14, 2151008 (2021). https://doi.org/10.1142/s1793604721510085

    Article  ADS  CAS  Google Scholar 

  24. A. Agostino, P. Volpe, M. Castiglioni, and M. Truccato, “Microwave synthesis of MgB2 superconductor,” Mater. Res. Innovations 8, 75–77 (2004). https://doi.org/10.1080/14328917.2004.11784833

    Article  ADS  CAS  Google Scholar 

  25. W. L. E. Wong, S. Karthik, and M. Gupta, “Development of high performance Mg–Al2O3 composites containing Al2O3 in submicron length scale using microwave assisted rapid sintering,” Mater. Sci. Technol. 21, 1063–1070 (2005). https://doi.org/10.1179/174328405x51758

    Article  ADS  CAS  Google Scholar 

  26. L. Wang, R. Zhang, L. Bo, F. Li, Ya. Hou, M. Zuo, and D. Zhao, “Effects of different pressing process on the microstructure and thermoelectric properties of TiNiSn1 – xTex half-Heusler alloy prepared by microwave method,” JOM 74, 4250–4257 (2022). https://doi.org/10.1007/s11837-022-05464-0

    Article  ADS  CAS  Google Scholar 

  27. L. Bo, R. Zhang, H. Zhao, Ya. Hou, X. Wang, J. Zhu, L. Zhao, M. Zuo, and D. Zhao, “Achieving high thermoelectric properties of Cu2Se via lattice softening and phonon scattering mechanism,” ACS Appl. Energy Mater. 5, 6453–6461 (2022). https://doi.org/10.1021/acsaem.2c00949

    Article  CAS  Google Scholar 

  28. F. Aliev, N. Brandt, V. Moshchalkov, V. Kozyrkov, R. Skolozdra, and A. Belogorokhov, “Gap at the Fermi level in the intermetallic vacancy system RBiSn (R = Ti, Zr, Hf),” Z. Phys. B Condens. Matter 75, 167–171 (1989). https://doi.org/10.1007/bf01307996

    Article  ADS  CAS  Google Scholar 

  29. F. Aliev, V. Kozyrkov, V. Moshchalkov, R. Scolozdra, and K. Durczewski, “Narrow band in the intermetallic compounds MNiSn (M = Ti, Zr, Hf),” Z. Phys. B Condens. Matter 80, 353–357 (1990). https://doi.org/10.1007/bf01323516

    Article  ADS  CAS  Google Scholar 

  30. D.-Yo. Jung, K. Kurosaki, Ch.-E. Kim, H. Muta, and Sh. Yamanaka, “Thermal expansion and melting temperature of the half-Heusler compounds: MNiSn (M = Ti, Zr, Hf),” J. Alloys Compd. 489, 328–331 (2010). https://doi.org/10.1016/j.jallcom.2009.09.139

    Article  CAS  Google Scholar 

  31. C. S. Birkel, J. E. Douglas, B. R. Lettiere, G. Seward, N. Verma, Yi. Zhang, T. M. Pollock, R. Seshadri, and G. D. Stucky, “Improving the thermoelectric properties of half-Heusler TiNiSn through inclusion of a second full-Heusler phase: Microwave preparation and spark plasma sintering of TiNi1+xSn,” Phys. Chem. Chem. Phys. 15, 6990 (2013). https://doi.org/10.1039/c3cp50918d

    Article  CAS  PubMed  Google Scholar 

  32. F. Aversano, M. Palumbo, A. Ferrario, S. Boldrini, C. Fanciulli, M. Baricco, and A. Castellero, “Role of secondary phases and thermal cycling on thermoelectric properties of TiNiSn half-Heusler alloy prepared by different processing routes,” Intermetallics 127, 106988 (2020). https://doi.org/10.1016/j.intermet.2020.106988

    Article  CAS  Google Scholar 

  33. K. Biswas, J. He, I. D. Blum, Ch.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, “High-performance bulk thermoelectrics with all-scale hierarchical architectures,” Nature 489, 414–418 (2012). https://doi.org/10.1038/nature11439

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Yi-X. Zhang, Q. Lou, Zh.-H. Ge, Sh.-W. Gu, J.‑X. Yang, J. Guo, Yu-K. Zhu, Yi. Zhou, X.-H. Yu, J. Feng, and J. He, “Excellent thermoelectric properties and stability realized in copper sulfides based composites via complex nanostructuring,” Acta Mater. 233, 117972 (2022). https://doi.org/10.1016/j.actamat.2022.117972

    Article  CAS  Google Scholar 

  35. L. Huang, R. He, S. Chen, H. Zhang, K. Dahal, H. Zhou, H. Wang, Q. Zhang, and Z. Ren, “A new n‑type half-Heusler thermoelectric material NbCoSb,” Mater. Res. Bull. 70, 773–778 (2015). https://doi.org/10.1016/j.materresbull.2015.06.022

    Article  CAS  Google Scholar 

  36. A. Karati, V. Hariharan, S. Ghosh, A. Prasad, M. Nagini, K. Guruvidyathri, R. C. Mallik, R. Shabadi, L. Bichler, B. Murty, and U. Varadaraju, “Thermoelectric properties of half-Heusler high-entropy Ti2NiCoSn1 – xSb1 + x (x = 0.5, 1) alloys with VEC > 18,” Scr. Mater. 186, 375–380 (2020). https://doi.org/10.1016/j.scriptamat.2020.04.036

    Article  CAS  Google Scholar 

  37. G. Mesaritis, I. Ioannou, A. Delimitis, E. Hatzikraniotis, Y. Gelbstein, and T. Kyratsi, “n-type (Zr, Ti)NiSn half Heusler materials via mechanical alloying: Structure, Sb-doping and thermoelectric properties,” J. Phys. Chem. Solids 167, 110735 (2022). https://doi.org/10.1016/j.jpcs.2022.110735

    Article  CAS  Google Scholar 

  38. J. Chen, H. Yang, C. Liu, J. Liang, L. Miao, Z. Zhang, P. Liu, K. Yoshida, C. Chen, Q. Zhang, Q. Zhou, Yu. Liao, P. Wang, Z. Li, and B. Peng, “Strategy of extra zr doping on the enhancement of thermoelectric performance for TiZrxNiSn synthesized by a modified solid-state reaction,” ACS Appl. Mater. Interfaces 13, 48801–48809 (2021). https://doi.org/10.1021/acsami.1c14723

    Article  CAS  PubMed  Google Scholar 

  39. H. Muta, T. Kanemitsu, K. Kurosaki, and S. Yamanaka, “High-temperature thermoelectric properties of Nb-doped MNiSn (M = Ti, Zr) half-Heusler compound,” J. Alloys Compd. 469, 50–55 (2009). https://doi.org/10.1016/j.jallcom.2008.02.041

    Article  CAS  Google Scholar 

  40. R.-F. Wang, S. Li, W.-H. Xue, C. Chen, Yu-M. Wang, X.-J. Liu, and Q. Zhang, “Enhanced thermoelectric performance of n-type TiCoSb half-Heusler by Ta doping and Hf alloying,” Rare Met. 40, 40–47 (2021). https://doi.org/10.1007/s12598-020-01569-0

    Article  CAS  Google Scholar 

  41. G. Uğur, A. K. Kushwaha, M. Güler, Z. Charifi, Ş. Uğur, E. Güler, and H. Baaziz, “Electronic structure, optical and vibrational properties of Ti2FeNiSb2 and Ti2Ni2InSb double half Heusler alloys,” Mater. Sci. Semicond. Process. 123, 105531 (2021). https://doi.org/10.1016/j.mssp.2020.105531

    Article  CAS  Google Scholar 

  42. K. Chen, C. Nuttall, E. Stefanaki, K. Placha, R. Tuley, K. Simpson, J.-W. G. Bos, and M. Reece, “Fast synthesis of n-type half-Heusler TiNiSn thermoelectric material,” Scr. Mater. 191, 71–75 (2021). https://doi.org/10.1016/j.scriptamat.2020.09.010

    Article  CAS  Google Scholar 

  43. H. B. Kang, B. Poudel, W. Li, H. Lee, U. Saparamadu, A. Nozariasbmarz, M. G. Kang, A. Gupta, J. J. Heremans, and S. Priya, “Decoupled phononic-electronic transport in multi-phase n-type half-Heusler nanocomposites enabling efficient high temperature power generation,” Mater. Today 36, 63–72 (2020). https://doi.org/10.1016/j.mattod.2020.01.002

    Article  CAS  Google Scholar 

  44. I. Ioannou, P. S. Ioannou, A. Delimitis, Ya. Gelbstein, I. J. Giapintzakis, and T. Kyratsi, “High thermoelectric performance of p-type half-Heusler (Hf, Ti)Co(Sb, Sn) solid solutions fabricated by mechanical alloying,” J. Alloys Compd. 858, 158330 (2021). https://doi.org/10.1016/j.jallcom.2020.158330

    Article  CAS  Google Scholar 

  45. V. I. Okulov, A. T. Lonchakov, and V. V. Marchenkov, “Semiconductor-like behavior of electric transport in Fe–V–Al-based metallic alloys and their uncommon magnetic properties,” Phys. Met. Metallogr. 119, 1325–1328 (2018). https://doi.org/10.1134/s0031918x18130240

    Article  ADS  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Yanzhong Pei Group at Tongji University for the partial measurement of TE properties.

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 51772132), Shandong Province Higher Educational Youth Innovative Science and Technology Program (grant no. 2019KJA018) and the leader of scientific research studio program of Jinan (grant no. 2021GXRC082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Gang Zhao.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rui-Peng Zhang, Bo, L., Wang, XL. et al. Effect of Nb Doping on Thermoelectric Properties of TiNiSn Half-Heusler Alloy Prepared by Microwave Method. Phys. Metals Metallogr. 124, 1341–1350 (2023). https://doi.org/10.1134/S0031918X22601925

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22601925

Keywords:

Navigation