Skip to main content
Log in

RETRACTED ARTICLE: Effect of Cerium on Structural and Dielectric Properties of Modified BiFeO3-PbTiO3 Ceramics for Photovoltaic Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

This article was retracted on 25 April 2022

This article has been updated

Abstract

In this communication, the cerium (Ce) modified (Bi0.4Fe0.4)(Pb0.6Ti0.3Ce0.3)O3 (BF-PT) ceramics is prepared by conventional solid-state reaction technique. The compound is found to crystallize in the rhombohedral crystal system with space group R-3c (#167). The refined lattice parameters are a = b = 4.989 Å, c = 17.062 Å, \(\alpha = \beta = 90^{^\circ } , \gamma = 120^{^\circ }\), V = 367.78 Å3 and \( \rho = 2.71\) g/cm3 (JCPDS No.-00-005-0586). The average crystallite size and lattice micro-strain in the ceramics are estimated at 47.6 nm and 0.117% respectively. Scanning electron microscopy analysis indicates low porosity and well-defined grain boundaries, with an average grain size of 13.7 μm. Raman spectroscopy confirms the presence of all constituent elements and ferroelectric character. Ultraviolet–visible (UV–Vis) spectroscopy analysis suggests a bandgap of 1.72 eV for the modified BF-BT ceramics, which is suitable for photovoltaic applications. The study of complex impedance suggests a Cole–Cole-type relaxation with a decrease in bulk resistance from 6.283 × 1013 Ω cm2 at 25°C to 1.783 × 10Ω cm2 at 500°C, confirming the negative temperature coefficient of resistance. The calculated activation energies are 849.8 meV, 706.5 meV, 575.1 meV, and 499.4 meV at 1 kHz, 10 kHz, 100 kHz, and 1000 kHz, indicating ionization of oxygen vacancy and the involvement of the released electrons in the hopping conduction process, and support a thermally activated conduction mechanism. The increase in the peak frequency difference between the \( Z^{{{\prime \prime }}}\) and \(M^{{{\prime \prime }}}\) spectrum with temperature suggesting a non-Debye-type relaxation in the material. The material is characterized to a high dielectric constant and low tangent loss suitable for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

  • 28 January 2022

    Editor’s Note: Readers are alerted that the reliability of data presented in this article is currently in question. Appropriate editorial action will be taken once all parties have had the opportunity to respond in full.

  • 25 April 2022

    This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1007/s11664-022-09649-w

Reference

  1. T. Kieliba, S. Bau, R. Schober, D. Oßwald, S. Reber, A. Eyerand, and G. Willeke, Sol. Energy Mater. Sol. Cells. 74, 261 (2002).

    Article  CAS  Google Scholar 

  2. M. Fiebig, T. Lottermoser, D. Fröhlich, A.V. Goltsev, and R.V. Pisarev, Nature 419, 818 (2002).

    Article  CAS  Google Scholar 

  3. D.V. Efremov, J. van den Brink, and D.I. Khomskii, Nat. Mater. 3, 853 (2004).

    Article  CAS  Google Scholar 

  4. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, and S.S. Wong, Nano Lett. 7, 766 (2007).

    Article  CAS  Google Scholar 

  5. B.H. Park, S.J. Hyun, S.D. Bu, T.W. Noh, J. Lee, H.D. Kim, T.H. Kim, and W. Jo, Appl. Phys. Lett. 74, 1907 (1999).

    Article  CAS  Google Scholar 

  6. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature 432, 84 (2004).

    Article  CAS  Google Scholar 

  7. K. Mishra, A. Satya, A. Bharathi, V. Sivasubramanian, V. Murthy, and A. Arora, J. Appl. Phys. 110, 123529 (2011).

    Article  Google Scholar 

  8. Z. Cheng, X. Wang, S. Dou, H. Kimura, and K. Ozawa, Phys. Rev. B 77, 092101 (2008).

    Article  Google Scholar 

  9. A.R. Makhdoom, M.J. Akhtar, M.A. Rafiq, and M.M. Hassan, Ceram. Int. 38, 3829 (2012).

    Article  CAS  Google Scholar 

  10. M. Shami, M. Awan, and M. Anis-ur-Rehman, Key Eng. Mater. 510, 348 (2012).

    Article  Google Scholar 

  11. R. Rai, I. Bdikin, M.A. Valente, and A.L. Kholkin, Mater. Chem. Phys. 119, 539 (2010).

    Article  CAS  Google Scholar 

  12. G.L. Yuan, S.W. Or, J.M. Liu, and Z.G. Liu, Appl. Phys. Lett. 89, 052905 (2006).

    Article  Google Scholar 

  13. G.L. Yuan, and S.W. Or, Appl. Phys. Lett. 88, 062905 (2006).

    Article  Google Scholar 

  14. V.A. Khomchenko, D.A. Kiselev, I.K. Bdikin, V.V. Shvartsman, P. Borisov, W. Kleemann, J.M. Vieira, and A.L. Kholkin, Appl. Phys. Lett. 93, 262905 (2008).

    Article  Google Scholar 

  15. J.R. Cheng, and N. Li, CrossJ. Appl. Phys. 94, 5153 (2003).

    Article  CAS  Google Scholar 

  16. V. Mathe, K. Patankar, R. Patil, and C. Lokhande, J. Magn. Magn. Mater. 270, 380 (2004).

    Article  CAS  Google Scholar 

  17. J. Huang, Y. Shao, and Q. Dong, J. Phys. Chem. Lett. 6, 3218 (2015).

    Article  CAS  Google Scholar 

  18. J.L. Knutson, J.D. Martin, and D.B. Mitzi, Inorg. Chem. 44, 4699 (2005).

    Article  CAS  Google Scholar 

  19. J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde, and A. Walsh, Nano Lett. 14, 2584 (2014).

    Article  CAS  Google Scholar 

  20. R.J.H. Voorhoeve, Advanced Materials in Catalysis. (Acad. Press, 199, 1977).

  21. R.I. Hines, Atomistic Simulation and Ab-initio Studies of Polar Solids. (Ph.D., Bristol, 1997).

  22. R.D. Shannon, Acta Crystallogr. A A32, 751 (1976).

    Article  CAS  Google Scholar 

  23. S.K. Parida, J. Mohapatra, and D.K. Mishra, Mater. Lett. 181, 116 (2016).

    Article  CAS  Google Scholar 

  24. B.D. Cullity, R.S. Stock, Elements of x-Ray Diffraction. (Prentice-Hall. New Jersey. 3rd edn, 2001)

  25. A. Ben Jazia Kharrat, N. Moutiab, K. Khirouni, and W. Boujelben, Mater. Res. Bull. 105, 75 (2018).

    Article  CAS  Google Scholar 

  26. M.K. Singh, H.M. Jang, S. Ryu, and M.H. Jo, Appl. Phys. Lett. 88, 42907 (2006).

    Article  Google Scholar 

  27. R. Haumont, J. Kreisel, P. Bouvier, and F. Hippert, Phys. Rev. B 73, 132101 (2006).

    Article  Google Scholar 

  28. J. Wu, and J. Wang, Acta Mater. 58, 1688 (2010).

    Article  CAS  Google Scholar 

  29. D. Kothari, V.R. Reddy, V.G. Sathe, A. Gupta, A. Banerjee, and A.M. Awasthi, J. Magn. Magn. Mater. 320, 548 (2008).

    Article  CAS  Google Scholar 

  30. G. Blasse, and A.F. Corsmit, J. Solid State Chem. 6, 513 (1973).

    Article  CAS  Google Scholar 

  31. A. Kumar, R. Kumar, N. Verma, A.V. Anupama, H.K. Choudhary, R. Philip, and B. Sahoo, Opt. Mater. 108, 110163 (2020).

    Article  CAS  Google Scholar 

  32. L.N. Mahour, H.K. Choudhary, R. Kumar, A.V. Anupama, and B. Sahoo, Ceram. Int. 45, 24625 (2019).

    Article  CAS  Google Scholar 

  33. R. Kumar, A. Kumar, N. Verma, R. Philip, and B. Sahoo, Phys. Chem. Chem. Phys. 22, 27224 (2020).

    Article  CAS  Google Scholar 

  34. P. Keburis, J. Banys, A. Brilingas, J. Prapuolenis, A. Kholkin, and M.E.V. Costa, Ferroelectrics 353, 149 (2007).

    Article  CAS  Google Scholar 

  35. R. Kumar, A. Kumar, N. Verma, V. Khopkar, R. Philip, and B. Sahoo, ACS Applied Nano Materials. 3, 8618 (2020).

    Article  CAS  Google Scholar 

  36. R. Kumar, A. Kumar, N. Verma, R. Philip, and B. Sahoo, J. Alloy. Compd. 849, 156665 (2020).

    Article  CAS  Google Scholar 

  37. R. Kumar, A. Kumar, N. Verma, A.V. Anupama, R. Philip, and B. Sahoo, Carbon 153, 545 (2019).

    Article  CAS  Google Scholar 

  38. S. Sallis, L.F.J. Piper, J. Francis, J. Tate, H. Hiramatsu, T. Kamiya, and H. Hosono, Phys. Rev. B. 85, 085207 (2012).

    Article  Google Scholar 

  39. G. Volonakis, A.A. Haghighirad, R.L. Milot, W.H. Sio, M.R. Filip, B. Wenger, M.B. Johnston, L.M. Herz, H.J. Snaith, and F. Giustino, J. Phys. Chem. Lett. 8, 772 (2017).

    Article  CAS  Google Scholar 

  40. S. Zhao, K. Yamamoto, S. Iikubo, S. Hayase, and T. Ma, J. Phys. Chem. Solids. 117, 117 (2018).

    Article  CAS  Google Scholar 

  41. Q. Hang, Z. Xing, X. Zhu, M. Yu, Y. Song, J. Zhu, and Z. Liu, Ceram. Int. 38, S411 (2012).

    Article  CAS  Google Scholar 

  42. A. Ben Jazi Akharrat, N. Moutiab, K. Khirouni, and W. Boujelben, Mater. Res. Bull. 105, 75 (2018).

    Article  CAS  Google Scholar 

  43. S.K. Parida, R.N.P. Choudhary, and P.G.R. Achary, Int. J. Microstruct. Mater. Prop. 15, 107 (2020).

    CAS  Google Scholar 

  44. S.K. Sinha, S.N. Choudhary, and R.N.P. Choudhary, J. Mater. Sci. 39, 315 (2004).

    Article  CAS  Google Scholar 

  45. P.G.R. Achary, A.A. Nayak, R.K. Bhuyan, R.N.P. Choudhary, and S.K. Parida, J. Mol. Struct. 1226, 129391 (2021).

    Article  CAS  Google Scholar 

  46. Q. Ke, X. Lou, Y. Wang, and J. Wang, Phys. Rev. B. 82, 024102 (2010).

    Article  Google Scholar 

  47. S. Thakura, R. Raia, I. Bdikinb, and M. Almeida Valente, Mater. Res. 19, 1 (2016).

    Article  Google Scholar 

  48. A. Khlifi, R. Hanen, A. Mleiki, H. Rahmouni, N. Guermazi, K. Khirouni, and A. Cheikhrouhou, Eur. Phys. J. Plus. 135, 790 (2020).

    Article  CAS  Google Scholar 

  49. S. Sen, R.N.P. Choudhary, and P. Pramanik, Phys. B Condens. Matter. 387, 56 (2007).

    Article  CAS  Google Scholar 

  50. Z.-L. Hou, M.-S. Cao, J. Yuan, X.-Y. Fang, and X.-L. Shi, J. Appl. Phys. 105, 076103 (2009).

    Article  Google Scholar 

  51. S.K. Barik, P.K. Mahapatra, and R.N.P. Choudhary, Appl. Phys. A. 85, 199 (2006).

    Article  CAS  Google Scholar 

  52. A. Hilczer, K. Kowalska, E. Markiewicz, A. Pietraszko, and B. Andrzejewski, Mat. Sci. Eng. B. 207, 47 (2016).

    Article  CAS  Google Scholar 

  53. S.K. Parida, and R.N.P. Choudhary, Phase Trans. 93, 981 (2020).

    Article  CAS  Google Scholar 

  54. S. Madolappaa, V. Anupamap, W. Jaschink, and B.R. Varmab Sahoo, Bull. Mater. Sci. 39, 593 (2016).

    Article  Google Scholar 

  55. V. Khopkar, and B. Sahoo, Phys. Chem. Chem. Phys. 22, 2986 (2020).

    Article  CAS  Google Scholar 

  56. S.T. Dadami, S. Matteppanavar, S. Rayaprol, B. Angadi, and B. Sahoo, J. Mag. Mag. Mater. 418, 122 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their gratitude and sincere thanks to our host institute for providing XRD and electrical characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Parida.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s11664-022-09649-w

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, S.K., Swain, M.K., Bhuyan, R.K. et al. RETRACTED ARTICLE: Effect of Cerium on Structural and Dielectric Properties of Modified BiFeO3-PbTiO3 Ceramics for Photovoltaic Applications. Journal of Elec Materi 50, 4685–4695 (2021). https://doi.org/10.1007/s11664-021-09016-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09016-1

Keywords

Navigation