Skip to main content
Log in

Magnetic and ferroelectric characteristics of Gd3+ and Ti4+ co-doped BiFeO 3 ceramics

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Polycrystalline BiFeO\(_{\mathrm {\mathbf {3}}}\) and Bi\(_{\mathrm {\mathbf {0.9}}}\)Gd\(_{\mathrm {\mathbf {0.1}}}\)Fe\(_{\boldsymbol {1-}\boldsymbol {{x}}}\)Ti x O 3 (x = 0, 0.01, 0.05 and 0.1) samples were synthesized by solid-state reaction route. Structural, magnetic and ferroelectric properties of these samples were investigated. X-ray powder diffraction (XRD) results confirmed the presence of a significant amount of Bi\(_{\mathrm {\mathbf {2}}}\)Fe\(_{\mathrm {\mathbf {4}}}\textit {O}_{\mathrm {\mathbf {9}}}\) impurity phase in the undoped BiFeO\(_{\mathrm {\mathbf {3}}}\) sample. Mössbauer spectroscopy studies corroborated the XRD studies to confirm the presence of impurity phase. We have observed that gadolinium (Gd\(^{\boldsymbol {3+}}\)) and titanium (Ti\(^{\boldsymbol {4+}}\)) doping, respectively, on Bi\(^{\boldsymbol {3+}}\) and Fe\(^{\boldsymbol {3+}}\) sites facilitated a significant reduction in the impurity phase formation in BiFeO\(_{\mathrm {\mathbf {3}}}\). Interestingly, Gd\(^{\boldsymbol {3+}}\)-doping significantly reduced the impurity phase formation as compared to the undoped BiFeO\(_{\mathrm {\mathbf {3}}}\) sample. This impurity phase formation was further overcome by doping higher (x \(\boldsymbol {\ge } \) 0.05) amounts of Ti in BiFeO\(_{\mathrm {\mathbf {3}}}\). The crystallographic site occupancies of Gd and Ti were confirmed by Rietveld refinement of XRD data, Mössbauer spectroscopy and magnetization measurements. An enhancement in ferromagnetic properties along with moderate ferroelectric properties have been observed after co-doping. There was an increasing trend in remnant polarization (P \(_{\mathrm {\mathbf {r}}}\)) with the increase in Ti concentration besides an improvement in the characteristic saturation magnetization. Our results demonstrate that Gd\(^{\boldsymbol {3+}}\) and Ti\(^{\boldsymbol {4+}}\) doping could be used to enhance multifunctional properties of BiFeO\(_{\mathrm {\mathbf {3}}}\) ceramics to enable them as potential material for various devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rovillian P, Desouza R, Gallias Y, Sacuto A, Measson M A, Colson D et al 2010, Nature Mater. 9 975

    Article  Google Scholar 

  2. Lazenka L V, Zhang G, Vanacken J, Makoed I I, Ravinsk A F and Moshchalkov V V 2012 J. Phys. D: Appl. Phys. 45 125002

    Article  Google Scholar 

  3. Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123

    Article  Google Scholar 

  4. Nan C W, Liu G, Lin Y -H and Chen H 2005 Phys. Rev. Lett. 94 197203

    Article  Google Scholar 

  5. Preethi Meher K R S and Varma K B R 2009 J. Appl. Phys. 106 124103

    Article  Google Scholar 

  6. Spaldin N A, Cheong S and Ramesh R 2010 Physics Today 63 38

    Article  Google Scholar 

  7. Kothari D, Reddy V R, Gupta A, Phase D M, Lakshmi N, Deshpande S K and Awasthi A M 2007 J. Phys.: Condens. Matter 19 136202

    Google Scholar 

  8. Catalan B G and Scott J F 2009 Adv. Mater. 21 2463

    Article  Google Scholar 

  9. Pradhan A K, Zhang K, Hunter D, Dadson J B, Louts G B, Bhattacharya P et al 2005, J. Appl. Phys. 97 093903

    Article  Google Scholar 

  10. Kalantari K S, Sinclair D C, Bingham P A, Pokorny J and Raeney I M 2012 J. Appl. Phys. 111 064107

    Article  Google Scholar 

  11. Agarwal R A, Ashima S S and Ahlawat N 2012 J. Phys. D: Appl. Phys. 45 165001

    Article  Google Scholar 

  12. Ruette B, Zvyagin S, Pyatakov A P, Bush A, Li J F, Belotelov V I et al 2004, Phys. Rev. B 69 064114

    Article  Google Scholar 

  13. Lin Y, Jiang Q, Wang Y and Nan C 2007 Appl. Phys. Lett. 90 172507

    Article  Google Scholar 

  14. Kumar M M, Srinath S, Kumar G S and Suryanarayana S V 1998 J. Magn. Magn. Mater. 188 203

    Article  Google Scholar 

  15. Cheng Z X, Wang X L, Du Y and Dou S X 2010 J. Phys. D: Appl. Phys. 43 242001

    Article  Google Scholar 

  16. Wang Y and Nan C W 2006 Appl. Phys. Lett. 89 052903

    Article  Google Scholar 

  17. Lotey G S and Verma N K 2012 J. Nanopart Res. 14 742

    Article  Google Scholar 

  18. Srinivas A, Kin D W, Hong K S and Suryanaryana S V 2003 Appl. Phys. Lett. 83 2217

    Article  Google Scholar 

  19. Basith M A, Kurni O, Alam M S, Sinha B L and Ahmmad B 2014 J. Appl. Phys. 115 024102

    Article  Google Scholar 

  20. Kumar M, Sat P C and Chhoker S 2014 J. Mater. Sci: Mater. Electron. 25 5366

    Google Scholar 

  21. Rodriguez-Carvajal J 1990 ‘FULLPROF: a program for Rietveld refinement and pattern matching analysis’, Abstracts of the Satellite Meeting on powder diffraction of the XV Congress of the IUCr, p 127, Toulouse, France

  22. Arnold D C, Night K S, Morrison F D and Lightfoot P 2009 Phys. Rev. Lett. 102 027602

    Article  Google Scholar 

  23. Shannon R D 1976 Acta Crystallogr. A 32 751

    Article  Google Scholar 

  24. Lubk A, Gemming S and Spaldin N A 2009 Phys. Rev. B 80 104110

    Article  Google Scholar 

  25. Brand R A 1987 Nucl. Instrum. Methods B 28 398

    Article  Google Scholar 

  26. Blaauw C and Van der Woulde F 1973 J. Phys. C: Solid State Phys. 6 1422

    Article  Google Scholar 

  27. Kostiner E and Shoemaker G L 1971 J. Solid State Chem. 3 186

    Article  Google Scholar 

  28. Grault D, Hervieu M, Nguyen N and Raveaou B 1988 J. Solid State Chem. 76 248

    Article  Google Scholar 

  29. Chaodan Z, Jun Y, Duanming Z, Bin Y, Yunyi W, Longhai W et al 2007, Int. Ferroelectric. 94 31

    Article  Google Scholar 

  30. Lebeugle D, Colson D, Forget A, Viret M, Bonville P, Marucco J F and Fusil S 2007 Phys. Rev. B 76 024116

    Article  Google Scholar 

  31. Friedrich A, Biehler J, Morgenroth W, Wiehl L, Winkler B, Hanfland M et al 2012, J. Phys.: Condens. Matter 24 145401

    Google Scholar 

  32. David R 2005 CRC Handbook of Chemistry and Physics Lide (ed) Internet version 2005, http://www.hbcpnetbase.com (Boca Raton, FL: CRC Press)

  33. Sawyer C B and Tower C H 1930 Phys. Rev. 35 269

    Article  Google Scholar 

  34. Fuji K, Kato H, Omoto K, Yashima M, Chen J and Xing X 2013 Phys. Chem. Chem. Phys. 15 6779

    Article  Google Scholar 

  35. Basu S, Hossai S K M, Chakarvorthy D and Pal M 2011 Curr. Appl. Phys. 11 976

    Article  Google Scholar 

Download references

Acknowledgement

S Madolappa greatly acknowledges the University Grants Commission (UGC, New Delhi), Government of India, for awarding Dr D S Kothari, post-doctoral fellowship wide order no. F.4-2/2006 (BSR)/13-907/2013 (BSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B SAHOO.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MADOLAPPA, S., ANUPAMA, A.V., JASCHIN, P.W. et al. Magnetic and ferroelectric characteristics of Gd3+ and Ti4+ co-doped BiFeO 3 ceramics. Bull Mater Sci 39, 593–601 (2016). https://doi.org/10.1007/s12034-016-1176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1176-0

Keywords

Navigation