Skip to main content
Log in

Electronic Structure, Optical Properties, and Potential Applications of n-BN/WS2 (n = 1 to 4) Heterostructures

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In contrast to bulk semiconductors, the bandgap of two-dimensional (2D) transition-metal dichalcogenide monolayers is strongly dependent on the dielectric environment. The optical properties of these 2D materials can also be significantly modified by substrate screening. We report herein the structural, electronic, and optical properties of n-BN/WS2 heterostructures consisting of a WS2 monolayer on top of n layers of BN substrates (n = 1 to 4) based on first-principles calculations and theoretical analysis. The results reveal that the bandgap of the n-BN/WS2 heterostructures decreases with increasing number of dielectric layers in the environment, while the band edge is enhanced. The 1-BN/WS2 heterostructure with one layer of BN is apt for photocatalytic water splitting applications. The imaginary part of the dielectric function also shows that the n-BN/WS2 layers exhibit semiconductor properties. As the number of layers is increased, the static dielectric constant increases. The n-BN/WS2 layers also exhibit optical anisotropy. These results suggest a pathway to engineer the bandgap of 2D materials via substrate choice.

Graphic abstract

Systematic study of various properties of n-BN/WS2 heterostructures and their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://www.quantum-espresso.org/.

References

  1. X. Duan, C. Wang, A. Pan, R. Yu, and X. Duan, Chem. Soc. Rev. 44, 8859 (2015).

    Article  CAS  Google Scholar 

  2. D. Sarkar, W. Liu, X. Xie, A.C. Anselmo, S. Mitragotri, and K. Banerjee, ACS Nano 8, 3992 (2014).

    Article  CAS  Google Scholar 

  3. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    Article  CAS  Google Scholar 

  4. M.-W. Lin, L. Liu, Q. Lan, X. Tan, S.D. Kulwinder, P. Zeng, V.M. Naik, M.M.-C. Cheng, and Z. Zhou, J. Phys. D Appl. Phys. 45, 345102 (2013).

    Article  CAS  Google Scholar 

  5. A.B. Laursen, S. Kegnas, S. Dahl, and I. Chorkendorff, Energy Environ. Sci. 5, 5577 (2012).

    Article  CAS  Google Scholar 

  6. K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang, and J. Ye, ACS Nano 8, 7078 (2014).

    Article  CAS  Google Scholar 

  7. Y. Qu, and X. Duan, Chem. Soc. Rev. 42, 2568 (2013).

    Article  CAS  Google Scholar 

  8. L. Feng, J. Su, and Z. Liu, J. Alloys Compd. 613, 122 (2014).

    Article  CAS  Google Scholar 

  9. Q. Yue, Z. Shao, S. Chang, and J. Li, Nanoscale Res. Lett. 8, 3544 (2013).

    Article  CAS  Google Scholar 

  10. F. Feng, W. Jiang, J. Su, L. Zhou, and Z. Liu, Nanoscale 8, 6507 (2016).

    Article  CAS  Google Scholar 

  11. A. Chernikov, T.C. Berkelbach, H.M. Hill, A. Rigosi, Y. Li, O.B. Aslan, D.R. Reichman, M.S. Hybertsen, and T.F. Heinz, Phys. Rev. Lett. 113, 076802 (2014).

    Article  CAS  Google Scholar 

  12. J. Shi, X. Zhang, D. Ma, D. Zhu, Y. Zhang, Z. Guo, Y. Yao, Q. Ji, X. Song, Y. Zhang, C. Li, Z. Liu, W. Zhu, and Y. Zhang, ACS Nano 9, 4017 (2015).

    Article  CAS  Google Scholar 

  13. G. Gupta, S. Kallatt, and K. Majumdar, Phys. Rev. B 96, 081403 (2017).

    Article  Google Scholar 

  14. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).

    Article  CAS  Google Scholar 

  15. R.M. Ribeiro, and N.M.R. Peres, Phys. Rev. B 83, 235312 (2011).

    Article  CAS  Google Scholar 

  16. L. Wirtz, A. Marini, and A. Rubio, Phys. Rev. Lett. 96, 126104 (2006).

    Article  CAS  Google Scholar 

  17. L. Liu, Y.P. Feng, and Z.X. Shen, Phys. Rev. B 68, 185 (2003).

    Google Scholar 

  18. W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M.F. Crommie, and A. Zettl, Appl. Phys. Lett. 98, 242105 (2011).

    Article  CAS  Google Scholar 

  19. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanable, T. Taniguchi, P. Kim, K.L. Shepard, and J. Hone, Nat. Nanotechnol. 5, 722 (2010).

    Article  CAS  Google Scholar 

  20. A. Raja, A. Chaves, J. Yu, G. Arefe, H.M. Hill, A.F. Rigosi, T.C. Berkelbach, P. Nagler, C. Schüller, T. Korn, and C. Nuckolls, Nat. Commun. 8, 15251 (2017).

    Article  Google Scholar 

  21. S. Borghardt, J.-S. Tu, F. Winkler, J. Schubert, W. Zander, K. Leosson, and B.E. Kardyna, Phys. Rev. Mater. 1, 054001 (2017).

    Article  Google Scholar 

  22. M. Druppel, T. Deilmann, P. Kruger, and M. Rohlng, Nat. Commun. 8, 2117 (2017).

    Article  CAS  Google Scholar 

  23. M.H. Naik, and M. Jain, Phys. Rev. Mater. 2, 084002 (2018).

    Article  CAS  Google Scholar 

  24. Q. Lv, and R. Lv, Carbon 145, 240 (2019).

    Article  CAS  Google Scholar 

  25. M.M. Ugeda, A.J. Bradley, S.-F. Shi, F.H. da Jornada, Y. Zhang, D.Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, and F. Wanf, Nat. Mater. 13, 1091 (2014).

    Article  CAS  Google Scholar 

  26. G. Kresse, and J. Jouber, Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  27. J.P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B Condens. Matter 54, 16533 (1996).

    Article  CAS  Google Scholar 

  28. S. Grimme, and J. Comput, Chemistry 25, 1463 (2004).

    CAS  Google Scholar 

  29. S. Grimme, and J. Comput, Chemistry 27, 1787 (2006).

    CAS  Google Scholar 

  30. H. Zhong, R. Quhe, Y. Wang, Z. Ni, M. Ye, Z. Song, Y. Pan, J. Yang, L. Yang, J. Shi, and J. Lu, Sci. Rep. 6, 21786 (2016).

    Article  CAS  Google Scholar 

  31. S. Ahmed, and J. Yi, Nano-Micro Lett. 9, 50 (2017).

    Article  CAS  Google Scholar 

  32. J. Su, N. Li, Y. Zhang, L. Feng, and Z. Liu, AIP Adv. 5, 077182 (2015).

    Article  CAS  Google Scholar 

  33. L. Feng, J. Su, D. Li, and Z. Liu, Phys. Chem. Chem. Phys. 17, 6700 (2015).

    Article  CAS  Google Scholar 

  34. F. Wooten, Chapter 2 - maxwell's equations and the dielectric function. Optical properties of solids, Wooten, F., ed., Academic Press, pp. 15–41 (1972)

  35. S.L. Adler, Phys. Rev. 126, 413 (1962).

    Article  Google Scholar 

  36. V. Lucarini, J.J. Saarinen, K.-E. Peiponen, and E.M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Berlin: Springer, 2005).

    Google Scholar 

  37. E. Pakizeh, and M. Moradi, J. Am. Ceram. Soc. 101, 5335 (2018).

    Article  CAS  Google Scholar 

  38. E. Pakizeh, J. Jalilian, and M. Mohammadi, RSC Adv. 9, 25900 (2019).

    Article  CAS  Google Scholar 

  39. P. Nozieres, and D. Pines, Phys. Rev. 113, 1254 (1959).

    Article  CAS  Google Scholar 

  40. G.R. Vakili-Nezhaad, A. Gujarathi, N. Al Rawahi, and M. Mohammadi, Mater. Chem. Phys. 230, 114 (2019).

    Article  CAS  Google Scholar 

  41. J. Wang, M.A. Fengcai, and M. Sun, RSC Adv. 7, 16801 (2017).

    Article  CAS  Google Scholar 

  42. Z. Wang, K. Zhao, H. Li, Z. Liu, Z. Shi, J. Lu, K. Suenaga, S.-K. Joung, T. Okazaki, Z. Jin, Z. Gu, Z. Gao, and S. Iijima, J. Mater. Chem. 21, 171 (2011).

    Article  CAS  Google Scholar 

  43. W.J. Schutte, J.L. De Boer, and F. Jellinek, J. Solid State Chem. 70, 207 (1987).

    Article  CAS  Google Scholar 

  44. M. Okada et al., ACS Nano 8, 8273 (2014).

    Article  CAS  Google Scholar 

  45. S. Wang, X. Wang, and J.H. Warner, ACS Nano 9, 5246 (2015).

    Article  CAS  Google Scholar 

  46. J.H. Warner, M.H. Ruemmeli, A. Bachmatiuk, and B. Buechner, ACS Nano 4, 1299 (2010).

    Article  CAS  Google Scholar 

  47. N. Berseneva, A. Gulans, A.V. Krasheninnikov, and R.M. Nieminen, Phys. Rev. B 87, 035404 (2013).

    Article  CAS  Google Scholar 

  48. Z.Y. Zhu, Y.C. Cheng, and U. Schwingenschlögl, Phys. Rev. B 84, 153402 (2011).

    Article  CAS  Google Scholar 

  49. Z. Huang, C. He, X. Qi, X. Yang, W. Liu, X. Wei, X. Peng, and J. Zhong, J. Phys. D Appl. Phys. 47, 075301 (2014).

    Article  CAS  Google Scholar 

  50. Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo, Y. Chen, J. Kang, J. Wang, W. Huang, and T. Yu, Nano Res. 8, 2562 (2015).

    Article  CAS  Google Scholar 

  51. E. Scalise, M. Houssa, G. Pourtois, and V. Afanas’ev, Nano Res. 5, 43 (2012).

    Article  CAS  Google Scholar 

  52. Y. He, Y. Yang, Z. Zhang, Y. Gong, W. Zhou, Z. Hu, G. Ye, X. Zhang, E. Bianco, S. Lei, and Z. Jin, Nano Lett. 16, 3314 (2016).

    Article  CAS  Google Scholar 

  53. A. Olaya-Castro, and G.D. Scholes, Int. Rev. Phys. Chem. 30, 49 (2011).

    Article  CAS  Google Scholar 

  54. M. Okada, Y. Miyauchi, K. Matsuda, T. Taniguchi, K. Watanabe, H. Shinohara, and R. Kitaura, Sci. Rep. 7, 322 (2017).

    Article  CAS  Google Scholar 

  55. F. Wang, Z. Wang, C. Jiang, L. Yin, R. Cheng, X. Zhan, K. Xu, F. Wang, Y. Zhang, and J. He, Small 13, 1604298 (2017).

    Article  CAS  Google Scholar 

  56. Y. Uchiyama, K. Watanabe, T. Taniguchi, K. Kojima, T. Endo, Y. Miyata, H. Shinohara, R. Kitaura. Phys. Mesoscale Nanoscale Phys. (2019)

  57. R. Schmidt, I. Niehues, R. Schneider, M. Drueppel, T. Deilmann, M. Rohlfing, S.M. De Vasconcellos, A. Castellanos-Gomez, and R. Bratschitsch, 2D Mater. 3, 021011 (2016).

    Article  CAS  Google Scholar 

  58. T. Esat et al., Nat. Phys. 12, 867 (2016).

    Article  CAS  Google Scholar 

  59. I.C. Gerber, and X. Marie, Phys. Rev. B 98, 245126 (2018).

    Article  CAS  Google Scholar 

  60. J. Su, J. He, J. Zhang, Z. Lin, J. Chang, J. Zhang, and Y. Hao, Sci. Rep. 9, 3518 (2019).

    Article  CAS  Google Scholar 

  61. B. Liu, A. Abbas, and C. Zhou, Adv. Electron. Mater. 3, 1700045 (2017).

    Article  CAS  Google Scholar 

  62. I. Tanabe, M. Gomez, W.C. Coley, D. Le, E.M. Echeverria, G. Stecklein, V. Kandyba, S.K. Balijepalli, V. Klee, A.E. Nguyen, and E. Preciado, Appl. Phys. Lett. 108, 252103 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahnaz Mohammadi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Pakizeh, E. Electronic Structure, Optical Properties, and Potential Applications of n-BN/WS2 (n = 1 to 4) Heterostructures. Journal of Elec Materi 50, 4696–4704 (2021). https://doi.org/10.1007/s11664-021-09015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09015-2

Keywords

Navigation