Skip to main content
Log in

Observation of robust anisotropy in WS2/BP heterostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) anisotropic materials have garnered significant attention in the realm of anisotropic optoelectronic devices due to their remarkable electrical, optical, thermal, and mechanical properties. While extensive research has delved into the optical and electrical characteristics of these materials, there remains a need for further exploration to identify novel materials and structures capable of fulfilling device requirements under various conditions. Here, we employ heterojunction interface engineering with black phosphorus (BP) to disrupt the C3 rotational symmetry of monolayer WS2. The resulting WS2/BP heterostructure exhibits pronounced anisotropy in exciton emissions, with a measured anisotropic ratio of 1.84 for neutral excitons. Through a comprehensive analysis of magnetic-field-dependent and temperature-evolution photoluminescence spectra, we discern varying trends in the polarization ratio, notably observing a substantial anisotropy ratio of 1.94 at a temperature of 1.6 K and a magnetic field of 9 T. This dynamic behavior is attributed to the susceptibility of the WS2/BP heterostructure interface strain to fluctuations in magnetic fields and temperatures. These findings provide valuable insights into the design of anisotropic optoelectronic devices capable of adaptation to a range of magnetic fields and temperatures, thereby advancing the frontier of material-driven device engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, L.; Han, W.; Pi, L. J.; Niu, P.; Han, J. B.; Wang, C. L.; Su, B.; Li, H. Q.; Xiong, J.; Bando, Y. et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat 2019, 1, 54–73.

    Article  CAS  Google Scholar 

  2. Zhan, Y.; Wang, Y.; Cheng, Q. F.; Li, C.; Li, K. X.; Li, H. Z.; Peng, J. S.; Lu, B.; Wang, Y.; Song, Y. L. et al. A butterfly-inspired hierarchical light-trapping structure towards a high-performance polarization-sensitive perovskite photodetector. Angew. Chem. 2019, 131, 16608–16614.

    Article  Google Scholar 

  3. Su, B. W.; Yao, B. W.; Zhang, X. L.; Huang, K. X.; Li, D. K.; Guo, H. W.; Li, X. K.; Chen, X. D.; Liu, Z. B.; Tian, J. G. A gate-tunable symmetric bipolar junction transistor fabricated via femtosecond laser processing. Nanoscale Adv. 2020, 2, 1733–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mao, N. N.; Zhang, S. S.; Wu, J. X.; Tian, H. H.; Wu, J. X.; Xu, H.; Peng, H. L.; Tong, L. M.; Zhang, J. Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy. Nano Res. 2018, 11, 3154–3163.

    Article  CAS  Google Scholar 

  5. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    Article  CAS  PubMed  Google Scholar 

  6. Buscema, M.; Groenendijk, D. J.; Steele, G. A.; Van Der Zant, H. S. J.; Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 2014, 5, 4651.

    Article  CAS  PubMed  Google Scholar 

  7. Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, S.; Yang, J.; Xu, R. J.; Wang, F.; Li, W. F.; Ghufran, M.; Zhang, Y. W.; Yu, Z. F.; Zhang, G.; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590–9596.

    Article  CAS  PubMed  Google Scholar 

  9. Mao, N. N.; Tang, J. Y.; Xie, L. M.; Wu, J. X.; Han, B. W.; Lin, J. J.; Deng, S. B.; Ji, W.; Xu, H.; Liu, K. H. et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 2016, 138, 300–305.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, X. L.; Ryder, C. R.; Wells, S. A.; Hersam, M. C. Resolving the in-plane anisotropic properties of black phosphorus. Small Methods 2017, 1, 1700143.

    Article  Google Scholar 

  11. Zhao, M.; Zhang, W. T.; Liu, M. M.; Zou, C.; Yang, K. Q.; Yang, Y.; Dong, Y. Q.; Zhang, L. J.; Huang, S. M. Interlayer coupling in anisotropic/isotropic van der Waals heterostructures of ReS2 and MoS2 monolayers. Nano Res. 2016, 9, 3772–3780.

    Article  CAS  Google Scholar 

  12. Liang, J.; Yang, D. Y.; Wu, J. D.; Dadap, J. I.; Watanabe, K.; Taniguchi, T.; Ye, Z. L. Optically probing the asymmetric interlayer coupling in rhombohedral-stacked MoS2 bilayer. Phys. Rev. X 2022, 12, 041005.

    CAS  Google Scholar 

  13. Tang, Y. X.; Hao, H.; Kang, Y.; Liu, Q. R.; Sui, Y. Z.; Wei, K.; Cheng, X. A.; Jiang, T. Distinctive interfacial charge behavior and versatile photoresponse performance in isotropic/anisotropic WS2/ReS2 heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 53475–53483.

    Article  CAS  PubMed  Google Scholar 

  14. Xie, X.; Ding, J. N.; Wu, B.; Zheng, H. H.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Anisotropic optical characteristics of WS2/ReS2 heterostructures with broken rotational symmetry. Appl. Phys. Lett. 2023, 123, 222101.

    Article  CAS  Google Scholar 

  15. Ruiz-Tijerina, D. A.; Soltero, I.; Mireles, F. Theory of moiré localized excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2020, 102, 195403.

    Article  CAS  Google Scholar 

  16. Patra, S.; Das, M.; Mahadevan, P. The role of stacking on the electronic structure of MoSe2 at small twist angles. J. Phys. Mater. 2024, 7, 014001.

    Article  Google Scholar 

  17. Delhomme, A.; Vaclavkova, D.; Slobodeniuk, A.; Orlita, M.; Potemski, M.; Basko, D. M.; Watanabe, K.; Taniguchi, T.; Mauro, D.; Barreteau, C. Flipping exciton angular momentum with chiral phonons in MoSe2/WSe2 heterobilayers. 2D Mater. 2020, 7, 041002.

    Article  CAS  Google Scholar 

  18. Hu, T.; Zhao, G. D.; Gao, H.; Wu, Y. B.; Hong, J. S.; Stroppa, A.; Ren, W. Manipulation of valley pseudospin in WSe2/CrI3 heterostructures by the magnetic proximity effect. Phys. Rev. B 2020, 101, 125401.

    Article  CAS  Google Scholar 

  19. Goode, S. W.; Wainwright, J. Characterization of locally rotationally symmetric space-times. Gen. Relat. Gravit. 1986, 18, 315–331.

    Article  Google Scholar 

  20. Tong, L.; Duan, X. Y.; Song, L. Y.; Liu, T. D.; Ye, L.; Huang, X. Y.; Wang, P.; Sun, Y. H.; He, X.; Zhang, L. J. et al. Artificial control of in-plane anisotropic photoelectricity in monolayer MoS2. Appl. Mater. Today 2019, 15, 203–211.

    Article  Google Scholar 

  21. Zheng, X. M.; Wei, Y. H.; Zhang, X. Z.; Wei, Z. H.; Luo, W.; Guo, X.; Liu, J. X.; Peng, G.; Cai, W. W.; Huang, H. et al. Symmetry engineering induced in-plane polarization in MoS2 through Van der Waals interlayer coupling. Adv Funct. Mater. 2022, 32, 2202658.

    Article  CAS  Google Scholar 

  22. Wang, W. J.; Sun, Y. R.; Dai, P.; Gao, H. L.; Du, C. H.; Li, K. L. Optical anisotropy and polarization selectivity in MoS2/Ta2NiSe5 van der Waals heterostructures. Appl. Phys. Lett. 2023, 122, 233101.

    Article  CAS  Google Scholar 

  23. Li, Z. Y.; Huang, J. W.; Zhou, L.; Xu, Z. A.; Qin, F.; Chen, P.; Sun, X. J.; Liu, G.; Sui, C. Q.; Qiu, C. Y. et al. An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces. Nat. Commun. 2023, 14, 5568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, D. L.; Gong, Y. N.; Chen, Y. X.; Lin, J. M.; Khan, Q.; Zhang, Y. P.; Li, Y.; Zhang, H.; Xie, H. P. Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett. 2020, 12, 36.

    Article  Google Scholar 

  25. Duan, S. Y.; Qin, F.; Chen, P.; Yang, X. P.; Qiu, C. Y.; Huang, J. W.; Liu, G.; Li, Z. Y.; Bi, X. Y.; Meng, F. H. et al. Berry curvature dipole generation and helicity-to-spin conversion at symmetry-mismatched heterointerfaces. Nat. Nanotechnol. 2023, 18, 867–874.

    Article  CAS  PubMed  Google Scholar 

  26. Zeng, C.; Zhong, J. H.; Wang, Y. P.; Yu, J.; Cao, L. K.; Zhao, Z. L.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W. et al. Observation of split defect-bound excitons in twisted WSe2/WSe2 homostructure. Appl. Phys. Lett. 2020, 117, 153103.

    Article  CAS  Google Scholar 

  27. Absor, M. A. U.; Kotaka, H.; Ishii, F.; Saito, M. Strain-controlled spin splitting in the conduction band of monolayer WS2. Phys. Rev. B 2016, 94, 115131.

    Article  Google Scholar 

  28. Mlack, J. T.; Das, P. M.; Danda, G.; Chou, Y. C.; Naylor, C. H.; Lin, Z.; López, N. P.; Zhang, T. Y.; Terrones, M.; Johnson, A. T. C. et al. Transfer of monolayer TMD WS2 and Raman study of substrate effects. Sci. Rep. 2017, 7, 43037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ribeiro, H. B.; Pimenta, M. A.; de Matos, C. J. S. Raman spectroscopy in black phosphorus. J. Raman Spectrosc. 2018, 49, 76–90.

    Article  CAS  Google Scholar 

  30. Rigosi, A. F.; Hill, H. M.; Li, Y. L.; Chernikov, A.; Heinz, T. F. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett. 2015, 15, 5033–5038.

    Article  CAS  PubMed  Google Scholar 

  31. Zheng, H. H.; Wu, B.; Li, S. F.; He, J.; Chen, K. Q.; Liu, Z. W.; Liu, Y. P. Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices. Nano Res. 2023, 16, 3429–3434.

    Article  CAS  Google Scholar 

  32. Fang, Y. T.; Wang, L.; Sun, Q. L.; Lu, T. P.; Deng, Z.; Ma, Z. G.; Jiang, Y.; Jia, H. Q.; Wang, W. X.; Zhou, J. M. et al. Investigation of temperature-dependent photoluminescence in multi-quantum wells. Sci. Rep. 2015, 5, 12718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shibata, H. Negative thermal quenching curves in photoluminescence of solids. Jpn. J. Appl. Phys. 1998, 37, 550.

    Article  CAS  Google Scholar 

  34. Zheng, H. H.; Wu, B.; Li, S. F.; Ding, J. N.; He, J.; Liu, Z. W.; Wang, C. T.; Wang, J. T.; Pan, A. L.; Liu, Y. P. Localization-enhanced moiré exciton in twisted transition metal dichalcogenide heterotrilayer superlattices. Light: Sci. Appl. 2023, 12, 117.

    Article  CAS  PubMed  Google Scholar 

  35. Ho, C. H.; Liu, Z. Z. Complete-series excitonic dipole emissions in few layer ReS2 and ReSe2 observed by polarized photoluminescence spectroscopy. Nano Energy 2019, 56, 641–650.

    Article  CAS  Google Scholar 

  36. He, H. R.; Zheng, H. H.; Wu, B.; Li, S. F.; Ding, J. N.; Liu, Z. W.; Wang, J. T.; Pan, A. L.; Liu, Y. P. Unveiling strain-enhanced moiré exciton localization in twisted van der Waals homostructures. Nano Res. 2024, 17, 3245–3252.

    Article  CAS  Google Scholar 

  37. Thingna, J.; Manzano, D.; Cao, J. S. Magnetic field induced symmetry breaking in nonequilibrium quantum networks. New J. Phys. 2020, 22, 083026.

    Article  CAS  Google Scholar 

  38. Huang, B.; Cenker, J.; Zhang, X. O.; Ray, E. L.; Song, T. C.; Taniguchi, T.; Watanabe, K.; McGuire, M. A.; Xiao, D.; Xu, X. D. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3. Nat. Nanotechnol. 2020, 15, 212–216.

    Article  CAS  PubMed  Google Scholar 

  39. Pershan, P. S.; Van der Ziel, J. P.; Malmstrom, L. D. Theoretical discussion of the inverse Faraday effect, Raman scattering, and related phenomena. Phys. Rev. 1966, 143, 574–583.

    Article  CAS  Google Scholar 

  40. Hogan, C. L. The ferromagnetic Faraday effect at microwave frequencies and its applications. Rev. Mod. Phys. 1953, 25, 253–262.

    Article  Google Scholar 

  41. Sharipov, M. Z.; Fayziyeva, Z. X. Faraday effect. Orient. J. Phys. Math. 2022, 2, 1–6.

    Article  Google Scholar 

  42. Shaw, J. A. Degree of linear polarization in spectral radiances from water-viewing infrared radiometers. Appl. Opt. 1999, 38, 3157–3165.

    Article  CAS  PubMed  Google Scholar 

  43. Al-Qasimi, A.; Korotkova, O.; James, D.; Wolf, E. Definitions of the degree of polarization of a light beam. Opt. Lett. 2007, 32, 1015–1016.

    Article  PubMed  Google Scholar 

  44. Kosowsky, A.; Kahniashvili, T.; Lavrelashvili, G.; Ratra, B. Faraday rotation of the Cosmic Microwave Background polarization by a stochastic magnetic field. Phys. Rev. D 2005, 71, 043006.

    Article  Google Scholar 

  45. Tutuc, E.; De Poortere, E. P.; Papadakis, S. J.; Shayegan, M. Inplane magnetic field-induced spin polarization and transition to insulating behavior in two-dimensional hole systems. Phys. Rev. Lett. 2001, 86, 2858–2861.

    Article  CAS  PubMed  Google Scholar 

  46. Brock, C. P.; Dunitz, J. D. Temperature dependence of thermal motion in crystalline anthracene. Acta Cryst. 1990, B46, 795–806.

    Article  CAS  Google Scholar 

  47. Wu, B.; Zheng, H. H.; Ding, J. N.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. Observation of interlayer excitons in trilayer type-II transition metal dichalcogenide heterostructures. Nano Res. 2022, 15, 9588–9594.

    Article  CAS  Google Scholar 

  48. Zheng, H. H.; Wu, B.; Wang, C. T.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Yu, G. Q.; Duan, J. A.; Liu, Y. P. Enhanced valley polarization in WSe2/YIG heterostructures via interfacial magnetic exchange effect. Nano Res. 2023, 16, 10580–10586.

    Article  CAS  Google Scholar 

  49. Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

    Article  CAS  PubMed  Google Scholar 

  50. Nagler, P.; Ballottin, M. V.; Mitioglu, A. A.; Mooshammer, F.; Paradiso, N.; Strunk, C.; Huber, R.; Chernikov, A.; Christianen, P. C. M.; Schüller, C. et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 2017, 8, 1551.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liu, E. F.; Barré, E.; van Baren, J.; Wilson, M.; Taniguchi, T.; Watanabe, K.; Cui, Y. T.; Gabor, N. M.; Heinz, T. F.; Chang, Y. C. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 2021, 594, 46–50.

    Article  CAS  PubMed  Google Scholar 

  52. Akamatsu, T.; Ideue, T.; Zhou, L.; Dong, Y.; Kitamura, S.; Yoshii, M.; Yang, D. Y.; Onga, M.; Nakagawa, Y.; Watanabe, K. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 2021, 372, 68–72.

    Article  CAS  PubMed  Google Scholar 

  53. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  54. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  55. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by various funding sources, notably the National Natural Science Foundation of China (No. 52373311), which significantly facilitated this study. The assistance rendered by the High-Performance Complex Manufacturing Key State Lab Project at CSU (No. ZZYJKT2020-12) greatly expedited the research process. Gratitude is extended to the Australian Research Council (ARC Discovery Project, DP180102976) for its substantial contribution to advancing this research agenda. Moreover, J. T. W. acknowledges support from the National Natural Science Foundation of China (Nos. 11974387 and 92263202), the National Key Research and Development Program of China (No. 2020YFA0711502), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB33000000). The authors also thank the High-Performance Computing Center of Central South University for providing indispensable computing resources for this study.

Author information

Authors and Affiliations

Authors

Contributions

The initiation of conceptualization was spearheaded by Y. P. L. Optical characterization utilizing Raman and PL techniques was conducted by X. R. L., X. X., and B. W. Numerical simulations grounded on DFT and accompanying elucidations were executed by J. T. W. Data analysis and inputs to manuscript drafting were carried out by Y. P. L., X. R. L., J. Y. C., B. W., S. F. L. and Z. W. L. J. H. and Y. P. L. supervised the project. All authors meticulously scrutinized and furnished remarks on the manuscript. The manuscript underwent a comprehensive revision process, with active involvement and indispensable contributions from all authors.

Corresponding author

Correspondence to Yanping Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xie, X., Wu, B. et al. Observation of robust anisotropy in WS2/BP heterostructures. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6638-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6638-x

Keywords

Navigation