Skip to main content
Log in

Optical Toffoli and Feynman reversible gates designing using DNA transmission lines

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Optical gates based on switchable material have become a focus of investigation. The present study designs an optical gate that uses DNA transmission lines and developed for Feynman and Toffoli reversible gates. It is shown that the implementation of a transmission line such as Ag/DNA/Ag produces a structure with high-quality switching. The switching characteristics of DNA were considered when designing the basic transmission line. The “On” mode is assumed for DNA with low conductivity. As conductivity increases, the line switches to the “Off” mode. A conceptual design is proposed in the present study for Feynman and Toffoli reversible gates for an optical regime at 300 THz based on DNA switching. A conceptual model is developed with an Ag/DNA/Ag transmission line controlled by changing the DNA bias. This transmission line provides a “Yes” gate, which is necessary for a reversible gate. The full wave time domain method was used to model the optical gates. The current work discusses how a DNA memristor can be used to design a compact reversible gate having a simple structure and high switching quality for use in optical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chattopadhyay, T.: All-optical reversible network design using microring resonators. IEEE J. Quantum Electron. 51(4), 1–8 (2015)

    Article  Google Scholar 

  • Diedrich, D., Rottler, A., Heitmann, D., Mendach, S.: Metal-dielectric metamaterials for transformation-optics and gradient-index devices in the visible regime. New J. Phys. 14(5), 053042 (2012)

    Article  ADS  Google Scholar 

  • Dolatabady, A., Granpayeh, N.: All optical logic gates based on two dimensional plasmonic waveguides with nanodisk resonators. J. Opt. Soc. Korea 16(4), 432–442 (2012)

    Article  Google Scholar 

  • Emboras, A., Goykhman, I., Desiatov, B., Mazurski, N., Stern, L., Shappir, J., Levy, U.: Nanoscale plasmonic memristor with optical readout functionality. Nano Lett. 13(12), 6151–6155 (2013)

    Article  ADS  Google Scholar 

  • Genot, A.J., Bath, J., Turberfield, A.J.: Reversible logic circuits made of DNA. J. Am. Chem. Soc. 133(50), 20080–20083 (2011)

    Article  Google Scholar 

  • Haghparast, M., Jassbi, S.J., Navi, K., Hashemipour, O.: Design of a novel reversible multiplier circuit using HNG gate in nanotechnology. World Appl. Sci. J. 3(6), 974–978 (2008)

    Google Scholar 

  • Hoessbacher, C., Fedoryshyn, Y., Emboras, A., Melikyan, A., Kohl, M., Hillerkuss, D., Hafner, C., Leuthold, J.: The plasmonic memristor: a latching optical switch. Optica 1(4), 198–202 (2014)

    Article  Google Scholar 

  • Hung, Y.-C., Hsu, W.-T., Lin, T.-Y., Fruk, L.: Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite. Appl. Phys. Lett. 99(25), 277 (2011)

    Article  Google Scholar 

  • Kumar, S., Raghuwanshi, S.K.: Design of optical reversible logic gates using electro-optic effect of lithium niobate based Mach–Zehnder interferometers. Appl. Opt. 55(21), 5693–5701 (2016)

    Article  ADS  Google Scholar 

  • Li, Z., Zhu, Z., Liu, W., Zhou, Y., Han, B., Gao, Y., Tang, Z.: Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 134(7), 3322–3325 (2012)

    Article  Google Scholar 

  • Liu, Y.-S., Banada, P.P., Bhattacharya, S., Bhunia, A.K., Bashir, R.: Electrical characterization of DNA molecules in solution using impedance measurements. Appl. Phys. Lett. 92(14), 143902 (2008)

    Article  ADS  Google Scholar 

  • Liu, X., Aizen, R., Freeman, R., Yehezkeli, O., Willner, I.: Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: application for logic gate operations. ACS Nano 6(4), 3553–3563 (2012)

    Article  Google Scholar 

  • McCutcheon, M.W., Rieger, G.W., Young, J.F., Dalacu, D., Poole, P.J., Williams, R.L.: All-optical conditional logic with a nonlinear photonic crystal nanocavity. Appl. Phys. Lett. 95(22), 221102 (2009)

    Article  ADS  Google Scholar 

  • Nozhat, N., Granpayeh, N.: All-optical logic gates based on nonlinear plasmonic ring resonators. Appl. Opt. 54(26), 7944–7948 (2015)

    Article  ADS  Google Scholar 

  • Nozhat, N., Alikomak, H., Khodadadi, M.: All-optical XOR and NAND logic gates based on plasmonic nanoparticles. Opt. Commun. 392, 208–213 (2017)

    Article  ADS  Google Scholar 

  • Ooi, K.J.A., Chu, H.S., Bai, P., Ang, L.K.: Electro-optical graphene plasmonic logic gates. Opt. Lett. 39(6), 1629–1632 (2014)

    Article  ADS  Google Scholar 

  • Park, S.-J., Taton, T.A., Mirkin, C.A.: Array-based electrical detection of DNA with nanoparticle probes. Science 295(5559), 1503–1506 (2002)

    ADS  Google Scholar 

  • Qin, S., Dong, R., Yan, X., Qianqian, D.: A reproducible write–(read) n–erase and multilevel bio-memristor based on DNA molecule. Org. Electron. 22, 147–153 (2015)

    Article  Google Scholar 

  • Sepideh, E., Sabbaghi-Nadooshan, R., Tavakoli, M.B.: DNA implementation for optical waveguide as a switchable transmission line and memristor. Opt. Quant. Electron. 50(4), 196 (2018)

    Article  Google Scholar 

  • Sethi, P., Roy, S.: Ultrafast all-optical reversible Peres and Feynman-double logic gates with silicon microring resonators. In: Gavrilova, M.L., Tan, C.J.K., Thapliyal, H., Ranganathan, N. (eds.) Transactions on Computational Science XXIV, pp. 21–36. Springer, Heidelberg (2014a)

    Google Scholar 

  • Sethi, P., Roy, S.: All-optical ultrafast XOR/XNOR logic gates, binary counter, and double-bit comparator with silicon microring resonators. Appl. Opt. 53(28), 6527–6536 (2014b)

    Article  ADS  Google Scholar 

  • Sun, B., Zhang, X., Zhou, G., Li, P., Zhang, Y., Wang, H., Xia, Y., Zhao, Y.: An organic nonvolatile resistive switching memory device fabricated with natural pectin from fruit peel. Org. Electron. 42, 181–186 (2017)

    Article  Google Scholar 

  • Thapliyal, H., Srinivas, M.B.: An extension to DNA based Fredkin gate circuits: design of reversible sequential circuits using Fredkin gates. In: Katagiri, Y. (ed.) Optomechatronic Micro/Nano Devices and Components, vol. 6050, pp. 196–202. International Society for Optics and Photonics, Bellingham (2005)

    Chapter  Google Scholar 

  • Tsang, H.K., Wong, C.S., Liang, T.K., Day, I.E., Roberts, S.W., Harpin, A., Drake, J., Asghari, M.: Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength. Appl. Phys. Lett. 80(3), 416–418 (2002)

    Article  ADS  Google Scholar 

  • Wu, X., Tian, J., Yang, R.: A type of all-optical logic gate based on graphene surface plasmon polaritons. Opt. Commun. 403, 185–192 (2017)

    Article  ADS  Google Scholar 

  • Xu, G., Cao, M., Liu, C., Sun, J., Pan, T.: Tunable surface plasmon-polaritons in a gyroelectric slab sandwiched between two graphene layers. Opt. Commun. 366, 112–118 (2016)

    Article  ADS  Google Scholar 

  • Younis, R.M., Areed, N.F., Obayya, S.S.: Fully integrated AND and OR optical logic gates. IEEE Photonics Technol. Lett. 26(19), 1900–1903 (2014)

    Article  ADS  Google Scholar 

  • Zarrabi, F.B., Bazgir, M., Naser-Moghadasi, M., Arezoomand, A.S.: Symmetrical metamaterial nano particle for improving the Fano mode for biological application at mid infrared. Opt. Int. J. Light Electron Opt. 130, 1191–1196 (2017)

    Article  Google Scholar 

  • Zhou, X., Zhang, T., Chen, L., Hong, W., Li, X.: A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement. J. Lightwave Technol. 32(21), 3597–3601 (2014)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Sabbaghi-Nadooshan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, S., Sabbaghi-Nadooshan, R. & Tavakoli, M.B. Optical Toffoli and Feynman reversible gates designing using DNA transmission lines. Opt Quant Electron 50, 324 (2018). https://doi.org/10.1007/s11082-018-1590-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1590-1

Keywords

Navigation