Skip to main content

Advertisement

Log in

Synthesis of Nano-Flower Metal–Organic Framework/Graphene Composites As a High-Performance Electrode Material for Supercapacitors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Great emphasis has always been placed on exploring electrode materials with high conductivity and high level of electrolyte availability for supercapacitors as next-generation energy storage devices. Recently, metal–organic frameworks (MOFs) have been used as electrode materials for supercapacitors due to their suitability of porosity and high surface area, and their structure and synthesis have been widely studied. However, using single-component metal–organic frameworks in supercapacitors results in poor electrical conductivity, insufficient stability, and poor mechanical properties, thwarting the effect of high capacity and efficient performance. In this paper, a useful strategy was employed to reduce the electric resistance of metal–organic frameworks by interlacing metal–organic framework crystals with graphene. Cu-MOFs/graphene hybrid composites were successfully fabricated and then characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, powder x-ray diffraction, Raman spectroscopy, Brunauer–Emmett–Teller and electrochemical techniques. The prepared nanocomposite showed outstanding electrochemical performance owing to the synergistic effects of the Cu-MOFs specific structure and high conductivity of graphene, yielding a high specific capacitance of 482 F g−1 at a scan rate of 10 mV s−1 and a good cycle lifetime along with 93.8% specific capacitance retaining at current density of 0.3 A g−1 after 1000 cycles in 6 M KOH aqueous electrolyte. Electrochemical examinations confirmed the existence of synergistic effects between Cu-MOF and graphene in the fabricated hybrid composites, making it an ideal advanced electrode candidate for supercapacitor applications. Moreover, a simple asymmetric supercapacitor was assembled in a 6 M KOH electrolyte with Cu-MOF/G and activated carbon as positive and negative electrodes, respectively, which renders high energy density (34.5 Wh kg−1) and power density (1350 W kg−1) at the current density of 0.5 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Yoon, T. Bok, C. Kim, Y. Na, S. Park, and K.S. Kim, ACS Nano 11, 4808 (2017).

    Article  CAS  Google Scholar 

  2. M. Tamaddoni Saray and H. Hosseini, Electrochim. Acta 222, 505 (2016).

    Article  CAS  Google Scholar 

  3. L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, and B. Wang, Coord. Chem. Rev. 307, 361 (2016).

    Article  CAS  Google Scholar 

  4. G. Wang, Y. Zhang, F. Zhou, Z. Sun, F. Huang, Y. Yu, L. Chen, and M. Pan, J. Energy Storage 7, 99 (2016).

    Article  Google Scholar 

  5. J. Yang, P. Xiong, C. Zheng, H. Qiu, and M. Wei, J. Mater. Chem. A 2, 16640 (2014).

    Article  CAS  Google Scholar 

  6. M.Y. Ghotbi and M. Azadfalah, Mater. Des. 89, 708 (2016).

    Article  CAS  Google Scholar 

  7. M.S. Rahmanifar, H. Hesari, A. Noori, M.Y. Masoomi, A. Morsali, and M.F. Mousavi, Electrochim. Acta 275, 76 (2018).

    Article  CAS  Google Scholar 

  8. Q. Chen, S. Lei, P. Deng, X. Ou, L. Chen, W. Wang, Y. Xiao, and B. Cheng, J. Mater. Chem. A 5, 19323 (2017).

    Article  CAS  Google Scholar 

  9. P.C. Banerjee, D.E. Lobo, R. Middag, W.K. Ng, M.E. Shaibani, and M. Majumder, ACS Appl. Mater. Interfaces 7, 3655 (2015).

    Article  CAS  Google Scholar 

  10. W. Xia, C. Qu, Z. Liang, B. Zhao, S. Dai, B. Qiu, Y. Jiao, Q. Zhang, X. Huang, W. Guo, D. Dang, R. Zou, D. Xia, Q. Xu, and M. Liu, Nano Lett. 17, 2788 (2017).

    Article  CAS  Google Scholar 

  11. P. Pachfule, D. Shinde, M. Majumder, and Q. Xu, Nat. Chem. 8, 718 (2016).

    Article  CAS  Google Scholar 

  12. P. Wen, P. Gong, J. Sun, J. Wang, and S. Yang, J. Mater. Chem. A 3, 13874 (2015).

    Article  CAS  Google Scholar 

  13. Y. Zhou, Z. Mao, W. Wang, Z. Yang, and X. Liu, ACS Appl. Mater. Interfaces 8, 28904 (2016).

    Article  CAS  Google Scholar 

  14. X. Xu, W. Shi, P. Li, S. Ye, C. Ye, H. Ye, T. Lu, A. Zheng, J. Zhu, L. Xu, M. Zhong, and X. Cao, Chem. Mater. 29, 6058 (2017).

    Article  CAS  Google Scholar 

  15. Q. Wang, Y. Yang, F. Gao, J. Ni, Y. Zhang, and Z. Lin, ACS Appl. Mater. Interfaces 8, 32477 (2016).

    Article  CAS  Google Scholar 

  16. C. Qu, B. Zhao, Y. Jiao, D. Chen, S. Dai, B.M. Deglee, Y. Chen, K.S. Walton, R. Zou, and M. Liu, ACS Energy Lett. 2, 1263 (2017).

    Article  CAS  Google Scholar 

  17. M. Jahan, Z. Liu, and K.P. Loh, Adv. Funct. Mater. 23, 5363 (2013).

    Article  CAS  Google Scholar 

  18. B. Li, Y. Fu, H. Xia, and X. Wang, Mater. Lett. 122, 193 (2014).

    Article  CAS  Google Scholar 

  19. J. Xu, C. Yang, Y. Xue, C. Wang, J. Cao, and Z. Chen, Electrochim. Acta 211, 595 (2016).

    Article  CAS  Google Scholar 

  20. P. Wen, Z. Li, P. Gong, J. Sun, J. Wang, and S. Yang, RSC Adv. 6, 13264 (2016).

    Article  CAS  Google Scholar 

  21. E. Jokar, S. Shahrokhian, E. Asadian, and H. Hosseini, J. Energy Storage 17, 465 (2018).

    Article  Google Scholar 

  22. M.B. Tayel, M.M. Soliman, S. Ebrahim, and M.E. Harb, J. Electron. Mater. 45, 820 (2015).

    Article  Google Scholar 

  23. G. Majano and J. Pérez-Ramírez, Adv. Mater. 25, 1052 (2013).

    Article  CAS  Google Scholar 

  24. H. Nourmohammadi Miankushki, A. Sedghi, and B. Saeid, J. Energy Storage 19, 201 (2018).

    Article  Google Scholar 

  25. N.L. Torad, M. Hu, S. Ishihara, H. Sukegawa, A.A. Belik, M. Imura, K. Ariga, Y. Sakka, and Y. Yamauchi, Small 10, 2096 (2014).

    Article  CAS  Google Scholar 

  26. S.K. Kandasamy and K. Kandasamy, J. Inorg. Organomet. Polym. Mater. 28, 559 (2018).

    Article  CAS  Google Scholar 

  27. S. Loera-Serna, M.A. Oliver-Tolentino, M. De Lourdes López-Núñez, A. Santana-Cruz, A. Guzmán-Vargas, R. Cabrera-Sierra, H.I. Beltrán, and J. Flores, J. Alloys Compd. 540, 113 (2012).

    Article  CAS  Google Scholar 

  28. M. Saraf, R. Rajak, and S.M. Mobin, J. Mater. Chem. A 4, 16432 (2016).

    Article  CAS  Google Scholar 

  29. K.S. Lin, A.K. Adhikari, C.N. Ku, C.L. Chiang, and H. Kuo, Int. J. Hydrogen Energy 37, 13865 (2012).

    Article  CAS  Google Scholar 

  30. C. Petit, J. Burress, and T.J. Bandosz, Carbon 49, 563 (2011).

    Article  CAS  Google Scholar 

  31. Z. Bian, J. Xu, S. Zhang, X. Zhu, H. Liu, and J. Hu, Langmuir 31, 7410 (2015).

    Article  CAS  Google Scholar 

  32. H.N. Miankushki, A. Sedghi, and S. Baghshahi, Int. J. Electrochem. Sci. 13, 2462 (2018).

    Article  CAS  Google Scholar 

  33. H.N. Miankushki, A. Sedghi, and S. Baghshahi, J. Solid State Electrochem. 22, 3317 (2018).

    Article  CAS  Google Scholar 

  34. Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, and X. Sun, Energy Storage Mater. 2, 35 (2016).

    Article  Google Scholar 

  35. P. Srimuk, S. Luanwuthi, A. Krittayavathananon, and M. Sawangphruk, Electrochim. Acta 157, 69 (2015).

    Article  CAS  Google Scholar 

  36. F.B. Ajdari, E. Kowsari, and A. Ehsani, J. Solid State Chem. 265, 155 (2018).

    Article  CAS  Google Scholar 

  37. D.Y. Lee, D.V. Shinde, E.K. Kim, W. Lee, I.W. Oh, N.K. Shrestha, J.K. Lee, and S.H. Han, Microporous Mesoporous Mater. 171, 53 (2013).

    Article  CAS  Google Scholar 

  38. W. Zhang, Y. Tan, Y. Gao, J. Wu, and J. Hu, J. Appl. Electrochem. 46, 441 (2016).

    Article  CAS  Google Scholar 

  39. R.R. Salunkhe, Y. Kamachi, N.L. Torad, S.M. Hwang, Z. Sun, S.X. Dou, J.H. Kim, and Y. Yamauchi, J. Mater. Chem. A 2, 19848 (2014).

    Article  CAS  Google Scholar 

  40. J.W. Jeon, R. Sharma, P. Meduri, B.W. Arey, H.T. Schaef, J.L. Lutkenhaus, J.P. Lemmon, P.K. Thallapally, M.I. Nandasiri, B.P. McGrail, and S.K. Nune, ACS Appl. Mater. Interfaces 6, 7214 (2014).

    Article  CAS  Google Scholar 

  41. J. Hong, S. Park, and S. Kim, Electrochim. Acta 311, 62 (2019).

    Article  CAS  Google Scholar 

  42. Y. Wang, S. Nie, Y. Liu, W. Yan, S. Lin, and G. Cheng, Polymers 11, 821 (2019).

    Article  CAS  Google Scholar 

  43. B.B. Khatua, A.K. Das, R. Bera, A. Maitra, S.K. Karan, S. Paria, L. Halder, S.K. Si, and A. Bera, J. Mater. Chem. A 5, 22242 (2017).

    Article  Google Scholar 

  44. J. Yang, Z. Ma, W. Gao, and M. Wei, Chem. Eur. J. 23, 631 (2017).

    Article  CAS  Google Scholar 

  45. F. Cao, M. Zhao, Y. Yu, B. Chen, Y. Huang, J. Yang, X. Cao, Q. Lu, X. Zhang, Z. Zhang, C. Tan, and H. Zhang, J. Am. Chem. Soc. 138, 6924 (2016).

    Article  CAS  Google Scholar 

  46. L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen, and B. Wang, J. Am. Chem. Soc. 137, 4920 (2015).

    Article  CAS  Google Scholar 

  47. R. Rajak, M. Saraf, A. Mohammad, and S.M. Mobin, J. Mater. Chem. A 5, 17998 (2017).

    Article  CAS  Google Scholar 

  48. D.Y. Lee, S.J. Yoon, N.K. Shrestha, S.H. Lee, H. Ahn, and S.H. Han, Microporous Mesoporous Mater. 153, 163 (2012).

    Article  CAS  Google Scholar 

  49. K.M. Choi, H.M. Jeong, J.H. Park, Y. Zhang, and J.K. Kang, ACS Nano 8, 7451 (2014).

    Article  CAS  Google Scholar 

  50. Y. Tan, W. Zhang, Y. Gao, J. Wu, and B. Tang, RSC Adv. 5, 17601 (2015).

    Article  CAS  Google Scholar 

  51. A.R. Ramachandran, C. Zhao, D. Luo, K. Wang, and F. Wang, Appl. Surf. Sci. 460, 33 (2018).

    Article  CAS  Google Scholar 

  52. S.N. Ansari, M. Saraf, A.K. Gupta, and S.M. Mobin, Chem. Asian J. 20, 1 (2019). https://doi.org/10.1002/asia.201900629.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arman Sedghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azadfalah, M., Sedghi, A. & Hosseini, H. Synthesis of Nano-Flower Metal–Organic Framework/Graphene Composites As a High-Performance Electrode Material for Supercapacitors. J. Electron. Mater. 48, 7011–7024 (2019). https://doi.org/10.1007/s11664-019-07505-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07505-y

Keywords

Navigation