Skip to main content
Log in

Thermoelectric Properties of Nanocrystalline Silicon Films Prepared by Hot-Wire and Plasma-Enhanced Chemical-Vapor Depositions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report thermoelectric measurements over a temperature range of 80 K to 300 K of heavily boron-doped nanocrystalline silicon films prepared by hot-wire and plasma-enhanced chemical-vapor depositions. The nanocrystalline silicon films were doped by either gaseous deposition precursors or post-deposition ion implantation, resulting in boron concentrations ranging from 1–2×1020 cm−3 to 3 × 1021 cm−3. Reasonable values of the Seebeck coefficient and electrical conductivity were obtained at 300 K, comparable to many other research work. We also report thermal conductivity measurements on these films before doping, which we use to estimate their prospective thermoelectric efficiency. These measurements show values as low as 0.76 W/mK at 300 K which depend highly upon the grain sizes of the nc-Si films. We find that post-deposition doping by ion-implantation is more effective at enhancing the power factor than gaseous doping, and the power factor is only weakly dependent upon doping concentration for the films doped by ion implantation. We conclude that improvements of the thermoelectric efficiency of nc-Si films may depend more on a reduction of their thermal conductivity than doping optimization. The small grain sizes and the low thermal conductivity of the undoped nc-Si films accomplished in this work are therefore encouraging developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC (Taylor and Francis Group), 2005).

    Google Scholar 

  2. J. He and T.M. Tritt, Science 29, 6358 (2017).

    Google Scholar 

  3. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  Google Scholar 

  4. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  5. G. Schierning, H. Wiggers, and R. Schmechel, ECS Trans. 69, 3 (2015).

    Article  Google Scholar 

  6. S. Uma, A.D. McConnell, M. Asheghi, K. Kurabayashi, and K.A. Goodson, Int. J. Thermophys. 22, 605 (2001).

    Article  Google Scholar 

  7. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).

    Article  Google Scholar 

  8. Z. Wang, J. Alaniz, W. Jang, J. Garay, and C. Dames, Nano Lett. 11, 2206 (2011).

    Article  Google Scholar 

  9. D.G. Cahill, H.E. Fisher, T. Klitsner, E.T. Swartz, and R.O. Pohl, J. Vac. Sci. Technol. A 7, 1259 (1989).

    Article  Google Scholar 

  10. B. Jugdersuren, B.T. Kearney, D.R. Queen, T.H. Metcalf, J.C. Culbertson, C.N. Chervin, R.M. Stroud, W. Nemeth, Q. Wang, and X. Liu, Phys. Rev. B 96, 014206 (2017).

    Article  Google Scholar 

  11. N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, and D. Narducci, Nanotechnology 24, 205402 (2013).

    Article  Google Scholar 

  12. V. Kessler, D. Gautam, T. Hülser, M. Spree, R. Theissmann, M. Winterer, H. Wiggers, G. Schierning, and R. Schmechel, Adv. Eng. Mater. 15, 379 (2013).

    Article  Google Scholar 

  13. T. Claudio, N. Stein, D.G. Stroppa, B. Klobes, M. Koza, P. Kudejova, N. Petermann, H. Wiggers, G. Schierning, and R.P. Hermann, Phys. Chem. Chem. Phys. 16, 25701 (2014).

    Article  Google Scholar 

  14. H. Zhou, P. Kropelnicki, and C. Lee, Nanoscale 7, 532 (2015).

    Article  Google Scholar 

  15. J. Loureiro, T. Mateus, S. Filonovich, M. Ferreira, J. Figueira, A. Rodrigues, B.F. Donovan, P.E. Hopkins, and I. Ferreira, Appl. Phys. A 120, 1497 (2015).

    Article  Google Scholar 

  16. K. Valalaki, N. Vouroutzis, and A.G. Nassiopoulou, J. Phys. D Appl. Phys. 49, 315104 (2016).

    Article  Google Scholar 

  17. E. Acosta, N.M. Wight, V. Smirnov, J. Buckman, and N.S. Bennett, J. Electron. Mater. 6, 3077 (2018).

    Article  Google Scholar 

  18. B. Nemeth, D.L. Young, M.R. Page, V. LaSalvia, S. Johnston, R. Reedy, and P. Stradins, J. Mater. Res. 31, 671 (2016).

    Article  Google Scholar 

  19. The Stopping and Range of Ions in Matter. http://www.srim.org/.

  20. B.T. Kearney, B. Jugdersuren, D.R. Queen, T.H. Metcalf, J.C. Culbertson, P.A. Desario, R.M. Stroud, W. Nemeth, Q. Wang, and X. Liu, J. Phys. Condens. Matter 30, 085301 (2018).

    Article  Google Scholar 

  21. D.G. Cahill, M. Katiyar, and J.R. Abelson, Phys. Rev. B 50, 9 (1994).

    Article  Google Scholar 

  22. J.P. Moore and R.S. Graves, J. Appl. Phys. 44, 1174 (1973).

    Article  Google Scholar 

  23. G.U. Sumanasekera, L. Grigorian, and P.C. Eklund, Meas. Sci. Technol. 11, 273 (2000).

    Article  Google Scholar 

  24. N.H. Nickel, P. Lengsfeld, and I. Sieber, Phys. Rev. B 61, 15558 (1999).

    Article  Google Scholar 

  25. R. Basu, S. Bhattacharya, R. Bhatt, M. Roy, S. Ahmad, A. Singh, M. Navaneethan, Y. Hayakawa, D.K. Aswala, and S.K. Gupta, J. Mater. Chem. A 2, 6922 (2014).

    Article  Google Scholar 

  26. L. Pelaz, L.A. Marqués, and J. Barbolla, J. Appl. Phys. 96, 5947 (2004).

    Article  Google Scholar 

  27. M. Takashiri, T. Borca-Tasciuc, A. Jacquot, K. Miyazaki, and G. Chen, J. Appl. Phys. 100, 054315 (2006).

    Article  Google Scholar 

  28. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  29. Y. Lee and G.S. Hwang, Phys. Rev. B 86, 075202 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Battogtokh Jugdersuren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jugdersuren, B., Kearney, B.T., Liu, X. et al. Thermoelectric Properties of Nanocrystalline Silicon Films Prepared by Hot-Wire and Plasma-Enhanced Chemical-Vapor Depositions. J. Electron. Mater. 48, 5218–5225 (2019). https://doi.org/10.1007/s11664-019-07262-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07262-y

Keywords

Navigation