Skip to main content
Log in

Hydrogenated Nano-/Micro-Crystalline Silicon Thin-Films for Thermoelectrics

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric technology has not yet been able to reach full-scale market penetration partly because most commercial materials employed are scarce/costly, environmentally unfriendly and in addition provide low conversion efficiency. The necessity to tackle some of these hurdles leads us to investigate the suitability of n-type hydrogenated microcrystalline silicon (μc-Si: H) in the fabrication of thermoelectric devices, produced by plasma enhanced chemical vapour deposition (PECVD), which is a mature process of proven scalability. This study reports an approach to optimise the thermoelectric power factor (PF) by varying the dopant concentration by means of post-annealing without impacting film morphology, at least for temperatures below 550°C. Results show an improvement in PF of more than 80%, which is driven by a noticeable increase of carrier mobility and Seebeck coefficient in spite of a reduction in carrier concentration. A PF of 2.08 × 10−4 W/mK2 at room temperature is reported for n-type films of 1 μm thickness, which is in line with the best values reported in recent literature for similar structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Weber and E. Gmelin, Appl. Phys. A 53, 136 (1991).

    Article  Google Scholar 

  2. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard, W.A. Iii, and J.R. Heath, Nature 451, 168 (2008).

    Article  Google Scholar 

  3. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  Google Scholar 

  4. J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang, Nano Lett. 10, 4279 (2010).

    Article  Google Scholar 

  5. C. B. Vining, The Thermoelectric Properties of Boron-Doped Silicon and Silicon-Germanium in the As-Hot Pressed Conditions, JPL/Calif. Inst. of Tech. technical report, 1988.

  6. S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, and J.P. Fleurial, Adv. Funct. Mater. 19, 2445 (2009).

    Article  Google Scholar 

  7. N.S. Bennett, N.M. Wight, S.R. Popuri, and J.-W.G. Bos, Nano Energy 16, 350 (2015).

    Article  Google Scholar 

  8. N. Attaf, M.S. Aida, and L. Hadjeris, Solid State Commun. 120, 525 (2001).

    Article  Google Scholar 

  9. Z. Wang, J. Alaniz, W. Jang, J. Garay, and C. Dames, Nano Lett. 11, 2206 (2011).

    Article  Google Scholar 

  10. N.M. Wight, E. Acosta, R.K. Vijayaraghavan, P.J. McNally, V. Smirnov, and N.S. Bennett, Therm. Sci. Eng. Prog. 3, 95 (2017).

    Article  Google Scholar 

  11. A. Yusufu, K. Kurosaki, Y. Miyazaki, M. Ishimaru, A. Kosuga, Y. Ohishi, H. Muta, and S. Yamanaka, Nanoscale 6, 13921 (2014).

    Article  Google Scholar 

  12. V. Kessler, D. Gautam, T. Hulser, M. Spree, R. Theissmann, M. Winterer, H. Wiggers, G. Schierning, and R. Schmechel, Adv. Eng. Mater. 15, 379 (2013).

    Article  Google Scholar 

  13. N. Uchida, T. Tada, Y. Ohishi, Y. Miyazaki, K. Kurosaki, and S. Yamanaka, J. Appl. Phys. 114, 134311 (2013).

    Article  Google Scholar 

  14. D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, and G. Ottaviani, J. Solid State Chem. 193, 19 (2012).

    Article  Google Scholar 

  15. N. Neophytos, Z. Xanthippi, K. Hans, F. Stefano, L. Bruno, and N. Dario, Nanotechnology 24, 205402 (2013).

    Article  Google Scholar 

  16. J. Loureiro, T. Mateus, S. Filonovich, M. Ferreira, J. Figueira, A. Rodrigues, B. Donovan, P. Hopkins, and I. Ferreira, Appl. Phys. A 120, 1497 (2015).

    Article  Google Scholar 

  17. V. Smirnov, W. Böttler, A. Lambertz, H. Wang, R. Carius, and F. Finger, Phys. Status Solidi (c) 7, 1053 (2010).

    Google Scholar 

  18. E. Vallat-Sauvain, C. Droz, F. Meillaud, J. Bailat, A. Shah, and C. Ballif, J. Non-Cryst. Solids 352, 1200 (2006).

    Google Scholar 

  19. G. Schierning, R. Theissmann, N. Stein, N. Petermann, A. Becker, M. Engenhorst, V. Kessler, M. Geller, A. Beckel, H. Wiggers, and R. Schmechel, J. Appl. Phys. 110, 113515 (2011).

    Article  Google Scholar 

  20. T. Weis, S. Brehme, P. Kanschat, W. Fuhs, R. Lipperheide, and U. Wille, J. Non-Cryst. Solids 299, 380 (2002).

    Google Scholar 

  21. D. Ruff, H. Mell, L. Tóth, I. Sieber, and W. Fuhs, J. Non-Cryst. Solids 227, 1011 (1998).

    Google Scholar 

  22. C. Sellmer, T. Bronger, W. Beyer, and R. Carius, Phys. Status Solidi. 7, 670 (2010).

    Google Scholar 

  23. S. Schicho, Amorphous and Microcrystalline Silicon Applied in Very Thin Tandem Solar Cells (Forschungszentrum: Zentralbibliothek, Jülich, 2011), p. 7.

    Google Scholar 

  24. H. Watanabe, N. Yamada, and M. Okaji, Int. J. Thermophys. 25, 221 (2004).

    Article  Google Scholar 

  25. A.Q. Tool and J.B. Saunders, J. Res. Natl. Bur. Stand. 42, 171 (1949).

    Article  Google Scholar 

  26. Mildred Dresselhaus, in AIP Conference Proceedings (2013), vol. 1519, pp. 36–39.

  27. T. Merdzhanova, Microcrystalline Silicon Films and Solar Cells Investigated by Photoluminescence Spectroscopy (Forschungszentrum: Zentralbibliothek, Jülich, 2005), p. 7.

    Google Scholar 

  28. K. Nakagawa, Y. Katayama, T. Shimada, H. Matsubara, A. Ishizaka, Y. Shiraki, and E. Maruyama, J. Non-Cryst. Solids 59, 799 (1983).

    Article  Google Scholar 

  29. D. Narducci, S. Frabboni, and X. Zianni, J. Mater. Chem. 3, 12176 (2015).

    Google Scholar 

  30. N. F. Hinsche, I. Mertig and P. Zahn, J. Phys.: Condens. Matter. 23, 295502 (2011).

  31. C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht, J. Meier, and A. Shah, Sol. Energy Mater. Sol. Cells 81, 61 (2004).

    Article  Google Scholar 

  32. H. Richter, Z.P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).

    Article  Google Scholar 

  33. I.H. Campbell and P.M. Fauchet, Solid State Commun. 58, 739 (1986).

    Article  Google Scholar 

  34. E. Vallat-Sauvain, U. Kroll, J. Meier, N. Wyrsch, and A. Shah, J. Non-Cryst. Solids 266, 125 (2000).

    Article  Google Scholar 

  35. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, Sol. Energy Mater. Sol. Cells 62, 97 (2000).

    Article  Google Scholar 

  36. H. Richter and L. Ley, J. Appl. Phys. 52, 7281 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Acosta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta, E., Wight, N.M., Smirnov, V. et al. Hydrogenated Nano-/Micro-Crystalline Silicon Thin-Films for Thermoelectrics. J. Electron. Mater. 47, 3077–3084 (2018). https://doi.org/10.1007/s11664-017-5977-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5977-8

Keywords

Navigation