Skip to main content

Advertisement

Log in

Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We reported a simple one-step way for synthesizing phosphorus-doped (P-doped) carbon composites with rich graphene (P-CCG) in this study. We prepared P-CCG in the presence of KCl molten salt at 750°C by using soluble phenolic resole and triphenylphosphine as carbon and phosphorus resources, respectively. Using x-ray photoelectron spectroscopy and elemental mapping, we detected the existence of P while the structure and morphology of P-CCG were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The morphology of P-CCG displayed that where scattered porous carbons exist, the graphene sheets chiefly constituted the composites. To further inquire into the influence of P doping, the electrochemical properties of P-CCG were tested by using P-CCG as the electrode material of button-type supercapacitors whose aqueous electrolyte was 6 M KOH. The results suggested P-CCG showed great improvements such as higher specific capacitance and strengthened cycling stability after 5000 cycles, compared with undoped carbon composites. The ideal sample, P0.4-CCG, offered outstanding capacitive behavior, including a larger specific capacitance of 277 F g−1, wide voltage window of 1.6 V and, a higher energy density of 26.42 Wh kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Wang, J. Yan, and Z. Fan, Energy Environ. 3, 729 (2016).

    Article  Google Scholar 

  2. Y. Zhu, S. Murali, and M.D. Stoller, Science 6037, 1537 (2011).

    Article  Google Scholar 

  3. H. Kim, K.Y. Park, and J. Hong, Sci. Rep. 2973, 5278 (2014).

    Google Scholar 

  4. Y. Xu, K. Sheng, and C. Li, ACS Nano 7, 4324 (2010).

    Article  Google Scholar 

  5. T. Fan, W. Zeng, and Q. Niu, Nanoscale Res. Lett. 1, 192 (2015).

    Article  Google Scholar 

  6. N. Zhang, N. Gao, C. Fu, D. Liu, S. Li, and L. Jiang, Electrochim. Acta 235, 340 (2017).

    Article  Google Scholar 

  7. M.M. Huq, C.T. Hsieh, and C.Y. Ho, Diam. Relat. Mater. 62, 58 (2015).

    Article  Google Scholar 

  8. D. Yu and L. Dai, J. Phys. Chem. Lett. 2, 467 (2009).

    Google Scholar 

  9. L. Wang, L. Sun, and C. Tian, RSC Adv. 22, 8359 (2012).

    Article  Google Scholar 

  10. Y. Yang, Y.X. Yin, and Y.G. Guo, Adv. Energy Mater. 8, 726 (2014)

  11. L. Gang, Z. Sun, and Y. Zhang, J. Porous Mater. 6, 1 (2017).

    Google Scholar 

  12. L. Dong, C. Hu, and X. Huang, Chem. Asian J. 12, 2609 (2016).

    Google Scholar 

  13. H. Jin, X. Wang, and Z. Gu, J. Power Sources 273, 1156 (2015).

    Article  Google Scholar 

  14. T.T. Lin, W.D. Wang, and Q.F. Lü, J. Anal. Appl. Pyrolysis 113, 545 (2015).

    Article  Google Scholar 

  15. F. Hao, L. Li, and X. Zhang, Mater. Res. Bull. 66, 88 (2015).

    Article  Google Scholar 

  16. S.F. Shirazi, S. Gharehkhani, and H. Yarmand, Mater. Lett. 9, 192 (2015).

    Article  Google Scholar 

  17. Y. Li, T.X. Shang, and J.M. Gao, RSC Adv. 31, 19098 (2017).

    Article  Google Scholar 

  18. J. Zhang, Z. Zhang, and X. Zhao, RSC Adv. 127, 104822 (2015).

    Article  Google Scholar 

  19. F. Yang, Z. Zhang, and K. Du, Carbon 91, 88 (2015).

    Article  Google Scholar 

  20. Y.F. Li, Y.Z. Liu, and Y. Liang, Appl. Phys. A 9, 566 (2017).

    Article  Google Scholar 

  21. Y.Y. Yin, R.Y. Li, and Z.J. Li, Electrochim. Acta 125, 330 (2014).

    Article  Google Scholar 

  22. C. Zhang, N. Mahmood, and H. Yin, Adv. Mater. 35, 4932 (2013).

    Article  Google Scholar 

  23. D. Zhang, M. Han, and Y. Li, J. Power Sources 372, 260 (2017).

    Article  Google Scholar 

  24. Q. Li, M. Hu, and K. Wang, Catal. Today 2, 314 (2018)

  25. P. Karthika, N. Rajalakshmi, and K.S. Dhathathreyan, J. Nanosci. Nanotechnol. 3, 1746 (2013).

    Article  Google Scholar 

  26. Y. Wen, B. Wang, and C. Huang, Chemistry 9, 3520 (2015).

    Article  Google Scholar 

  27. J. Yi, Y. Qing, and C.T. Wu, J. Power Sources 351, 130 (2017).

    Article  Google Scholar 

  28. W. Yang, W. Yang, and L. Kong, Carbon 7, 1042 (2017).

  29. V. Thirumal, A. Pandurangan, and R. Jayavel, J. Mater. Sci. Mater. Electron. 8, 6319 (2015).

    Article  Google Scholar 

  30. Y. Song, Z. Li, and K.K. Guo, Nanoscale 10, 1039 (2016).

    Google Scholar 

  31. Y.Q. Dang, S.Z. Ren, and G. Liu, Nanomaterials 11, 212 (2016).

    Article  Google Scholar 

  32. L.X. Jin, Z. Jin, and X. Wei, Electrochim. Acta 190, 923 (2016).

    Article  Google Scholar 

  33. H. Pan, S. Zhu, and L. Mao, J. Inorg. Organomet. Polym. Mater. 2, 179 (2015).

    Article  Google Scholar 

  34. J.X. Shen and Z. Yao, Technol. Dev. Chem. Ind. 9, 3018 (2016).

  35. M. Lojka, O. Jankovský, and D. Sedmidubský, New J. Chem. 42, 10 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xitao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ali, S., Liu, F. et al. Phosphorus-Doped Carbon Composites with Rich Graphene Derived from Phenol Resin as Supercapacitor Electrode Materials with High Window Potential and Energy Density. J. Electron. Mater. 48, 4196–4206 (2019). https://doi.org/10.1007/s11664-019-07188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07188-5

Keywords

Navigation