Skip to main content
Log in

On the temperature dependent current transport mechanisms and barrier inhomogeneity in Au/SnO2–PVA/n-Si Schottky barrier diodes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we report the preparation and characterization of SnO2–PVA nanocomposite film as interlayer for Schottky barrier diodes (SBDs). The possible current transport mechanisms (CTMs) of the prepared SBDs were investigated using the forward-bias current–voltage (IV) characteristics in the temperature range of 80–400 K. The structure of nanocomposite film was characterized by an X-ray diffractometer (XRD) and the surface morphology was investigated using a Scanning Electron Microscopy (SEM) at room temperature. The values of ideality factor (n) and zero-bias barrier height (\(\overline{\varPhi }_{\text{Bo}}\)) showed variation with temperature, such that they changed from 19.10 to 3.77 and 0.190 to 0.844 eV, respectively. \(\overline{\varPhi }_{\text{Bo}}\)n, \(\overline{\varPhi }_{\text{Bo}}\)q/2kT, and n −1q/2kT plots were drawn to get evidence to the Gaussian Distribution (GD) of the barrier height (BH). These plots revealed two distinct linear regions with different slopes for low temperatures (80–160 K) (LTs) and high temperatures (180–400 K) (HTs). This behavior is an evidence to the existence double GD of BHs which provides an average value for BH (\(\overline{\varPhi }_{\text{Bo}}\)) and a standard deviation (σs) for each region. The high value of n especially at low temperatures was attributed to the existence of interlayer: interface states (N ss) and barrier inhomogeneity at Au/n-Si interface. The values of \(\overline{\varPhi }_{\text{Bo}}\) and σs were obtained from the intercept and slope of mentioned plots as 0.588 and 0.0768 V for LTs and 1.183 eV and 0.158 V for HTs, respectively. Moreover, the modified ln(I s/T 2)−q 2σ 2s /2k 2 T 2 vs q/kT plot also showed two linear regions. The values of \(\overline{\varPhi }_{\text{Bo}}\) and effective Richardson constant (A *) were extracted from the slope and intercept of this plot as 0.610 eV and 93.13 A/cm2 K2 for LTs and 1.235 eV and 114.65 A/cm2 K2 for HTs, respectively. The value of A* for HTs is very close to the theoretical value (112 A/cm2 K2) of n-type Si. Thus, the forward-bias IVT characteristics of Au/SnO2–PVA/n-Si (SBDs) were successfully explained in terms of the thermionic-emission (TE) mechanism with a double GD of BHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.M. Sze, Physics of semiconductor devices, 2nd edn. (Willey, New York, 1981)

    Google Scholar 

  2. E.H. Rhoderick, R.H. Williams, Metal-semiconductor contacts (Clarendon, Oxford, 1988)

    Google Scholar 

  3. V.R. Reddy, M.S. Pratap Reddy, B.P. Lakshmi, A. Ashok Kumar, Electrical characterization of Au/n-GaN metal-semiconductor and Au/SiO2/n-GaN metal–insulator-semiconductor structures. J. Alloy Compd. 509, 8001 (2011)

    Article  Google Scholar 

  4. V.R. Reddy, V. Manjunath, V. Janardhanam, Y.-H. Kil, C.-J. Choi, Electrical properties and current transport mechanisms of the Au/n-GaN Schottky structure with solution- processed high-k BaTiO3 interlayer. J. Electron. Mater. 43, 3499 (2014)

    Article  ADS  Google Scholar 

  5. M. Yıldırım, M. Gökçen, Controlling the electrical characteristics of Au/n-Si structures by interfacial insulator layer. Mat. Sci. Semicond. Proc. 15, 406 (2012)

    Article  Google Scholar 

  6. Ş. Altındal, F. Parlaktürk, A. Tataroğlu, M. Parlak, S.N. Sarmasov, A.A. Agasiev, The temperature profile and bias dependent series resistance of Au/Bi4Ti3O12/SiO2/n-Si (MFIS) structures. Vacuum 82, 1246 (2008)

    Article  ADS  Google Scholar 

  7. G. Panomsuwan, O. Takai, N. Saito, Enhanced memory window of Au/BaTiO3/SrTiO3/Si (001) MFIS structure with high c-axis orientation for non-volatile memory applications. Appl. Phys. A 108, 337 (2012)

    Article  ADS  Google Scholar 

  8. Ç.Ş. Güçlü, A.F. Özdemir, Ş. Altındal, Double exponential I-V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS)- type Schottky barrier diodes in wide temperature range. Appl. Phys. A 122, 1032 (2016)

    Article  Google Scholar 

  9. G. Ersöz, İ. Yücedağ, Y. Azizian-Kalandaragh, İ. Orak, Ş. Altındal, Investigation of electrical characteristics in Al/CdS-PVA/p-Si (MPS) structures using impedance spectroscopy method. IEEE T Electron. Dev 63, 2948 (2016)

    Article  ADS  Google Scholar 

  10. S.O. Tan, H. Uslu Tecimer, O. Çiçek, H. Tecimer, İ. Orak, Ş. Altındal, Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities. J Mater. Sci. Mater. El 27, 8340–8347 (2016)

    Article  Google Scholar 

  11. S. Altındal Yerişkin, M. Balbaşı, S. Demirezen, Temperature and voltage dependence of barrier height and ideality factor in Au/0.07 graphene-doped PVA/n-Si structures. Indian J. Phys. 91, 421–430 (2017)

    Article  Google Scholar 

  12. Ç. Bilkan, Y. Azizian-Kalandaragh, Ş. Altındal, R. Shokrani-Havigh, Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures. Phys. B 500, 154 (2016)

    Article  ADS  Google Scholar 

  13. S. Altındal Yerişkin, M. Balbaşı, A. Tataroğlu, Frequency and voltage dependence of dielectric properties, complex electric modulus, and electrical conductivity in Au/7% graphene doped-PVA/n-Si (MPS) structures. J. Appl. Polym. Sci. 133, 43827 (2016)

    Google Scholar 

  14. E.J.W. Crossland, N. Noel, V. Sivaram, T. Leijtens, J.A. Alexander-Webber, H.J. Snaith, Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495, 215 (2013)

    Article  ADS  Google Scholar 

  15. Y. Izumi, Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 257, 171 (2013)

    Article  Google Scholar 

  16. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919 (2014)

    Article  Google Scholar 

  17. J. Xu, Z.H. Chen, J.A. Zapien, C.S. Lee, W.J. Zhang, Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells. Adv. Mater. 26, 5337 (2014)

    Article  Google Scholar 

  18. J. Tian, G. Cao, Design, fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells. Coord. Chem. Rev. 320–321, 193–215 (2016)

    Article  Google Scholar 

  19. H.J. Snaith, C. Ducati, SnO2-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency. Nano Lett. 10, 1259–1265 (2010)

    Article  ADS  Google Scholar 

  20. Y. Han, X. Wu, Y. Ma, L. Gong, F. Qu, H. Fan, Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications. CrystEngComm 13, 3506–3510 (2011)

    Article  Google Scholar 

  21. J. Zhang, J. Guo, H. Xu, B. Cao, Reactive-template fabrication of porous SnO2 nanotubes and their remarkable gassensing performance. ACS Appl. Mater. Interface 5, 7893–7898 (2013)

    Article  Google Scholar 

  22. P. Meduri, C. Pendyala, V. Kumar, G.U. Sumanasekera, M.K. Sunkara, Hybrid tin oxide nanowires as stable and high capacity anodes for li-ion batteries. Nano Lett. 9, 612–616 (2009)

    Article  ADS  Google Scholar 

  23. S.N. Pusawale, P.R. Deshmukh, C.D. Lokhande, Chemical synthesis of nanocrystalline SnO2 thin films for supercapacitor application. Appl. Surf. Sci. 257, 9498–9502 (2011)

    Article  ADS  Google Scholar 

  24. M. Eckle, G. Decher, Tuning the performance of layer-by-layer assembled organic light emitting diodes by controlling the position of isolating clay barrier sheets. Nano Lett. 1, 45–49 (2001)

    Article  ADS  Google Scholar 

  25. Ç. Bilkan, Ş. Altındal, Y. Azizian-Kalandaragh, Investigation of frequency and voltage dependence surface states and series resistance profiles using admittance measurements in Al/p-Si with Co3O4-PVA interlayer structures. Phys. B 515, 28–33 (2017)

    Article  ADS  Google Scholar 

  26. Y. Azizian-Kalandaragh, F. Sedaghatdoust-Bodagh, E. Alizadeh-Gheshlaghi, A. Khodayari, Characterization of some electrical properties of CdS-Gelatin nanocomposites using hall measurement technique. J Nanoelectron. Optoelectron. 12, 231–235 (2017)

    Article  Google Scholar 

  27. R.F. Schmitsdrof, T.U. Kampen, W. Mönch, Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers. J. Vac. Sci. Technol. B 15, 1221 (1997)

    Article  Google Scholar 

  28. R.T. Tung, Recent advances in Schottky barrier concepts. Mat. Sci. Eng. R 35, 1 (2001)

    Article  Google Scholar 

  29. Y.P. Song, R.L. Van Meirhaeghe, W.H. Laflere, F. Cardon, On the difference in apparent barrier height as obtained from capacitance-voltage and current-voltage-temperature measurements on Al/p-InP Schottky barriers. Solid State Electron. 29, 633 (1986)

    Article  ADS  Google Scholar 

  30. J.H. Werner, H.H. Güttler, Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 69, 1522 (1991)

    Article  ADS  Google Scholar 

  31. M.K. Hudait, S.B. Krupanidhi, Interface states density distribution in Au/n-GaAs Schottky diodes on n-Ge and n-GaAs substrates. Mat. Sci. Eng. B. 87, 141 (2001)

    Article  Google Scholar 

  32. A. Kaya, S. Demirezen, H. Tecimer, Ş. Altındal, Temperature and voltage effect on barrier height and ideality factor in Au/PVC + TCNQ/p-Si structures. Adv. Polym. Technol. 33, 21442 (2014)

    Article  Google Scholar 

  33. J.P. Sulvian, R.T. Tung, M.R. Pinto, W.R. Graham, Electron transport of inhomogeneous Schottky barriers: a numerical study. J. Appl. Phys. 70, 7403 (1991)

    Article  ADS  Google Scholar 

  34. L. Huang, Barrier inhomogeneities of platinum contacts to 4H-SiC. Superlattice Microstruct. 100, 648–655 (2016)

    Article  Google Scholar 

  35. W. Mönch, On the band-structure lineup at Schottky contacts and semiconductor heterostructures. Mat. Sci. Semicond. Proc. 28, 2–12 (2014)

    Article  Google Scholar 

  36. R. Singh, P. Sharma, M.A. Khan, V. Garg, V. Awasthi, A. Kranti, S. Mukherjee, Investigation of barrier inhomogeneities and interface state density in Au/MgZnO: Ga Schottky contact. J. Phys. D Appl. Phys. 49, 445303 (2016)

    Article  Google Scholar 

  37. Z. Khurelbaatar, M.-S. Kang, K.-H. Shim, H.-J. Yun, J. Lee, H. Hong, S.-Y. Chang, S.-N. Lee, C.-J. Choi, Temperature dependent current-voltage characteristics of Au/n-type Ge Schottky barrier diodes with graphene interlayer. J. Alloys Compd. 650, 658–663 (2015)

    Article  Google Scholar 

  38. A. Chatterjee, S.K. Khamari, V.K. Dixit, S.M. Oak, T.K. Sharma, Dislocation-assisted tunnelling of charge carriers across the Schottky barrier on the hydride vapour phase epitaxy grown GaN. J. Appl. Phys. 118, 175703 (2015)

    Article  ADS  Google Scholar 

  39. I. Jyothi, V. Janardhanam, H. Hong, C.-J. Choi, Current-voltage and capacitance-voltage characteristics of Al Schottky contacts to strained Si-on-insulator in the wide temperature range. Mat. Sci. Semicond. Proc. 39, 390–399 (2015)

    Article  Google Scholar 

  40. K. Moraki, S. Bengi, S. Zeyrek, M.M. Bülbül, Ş. Altındal, Temperature dependence of characteristic parameters of the Au/C20H12/n-Si Schottky barrier diodes (SBDs) in the wide temperature range. J Mat Sci. Mat. Electron. 28, 3987–3996 (2017)

    Article  Google Scholar 

  41. B.L. Sharma, Metal-semiconductor Schottky Barrier junctions and their applications (Plenum Press, New York, 1984)

    Book  Google Scholar 

  42. M.A. Laurent, G. Gupta, D.J. Suntrup, S.P. DenBaars, Barrier height inhomogeneity and its impact on (Al, In, Ga) N Schottky diodes. J. Appl. Phys. 119, 064501 (2016)

    Article  ADS  Google Scholar 

  43. M.A. Mayimele, J.P.J. Rensburg, F.D. Auret, M. Diale, Analysis of temperature-dependent current-voltage characteristics and extraction of series resistance in Pd/ZnO Schottky barrier diodes. Phys. B 480, 58–62 (2016)

    Article  ADS  Google Scholar 

  44. H. Tecimer, A. Türüt, H. Uslu, S. Altındal, I. Uslu, Temperature dependent current-transport mechanism in Au/(Zn-doped)PVA/n-GaAs Schottky barrier diodes (SBDs). Sens. Actuat. A Phys. 199, 194–201 (2013)

    Article  Google Scholar 

  45. F.A. Padovani, R. Stratton, Field and thermionic-field emission in Schottky barriers. Solid State Electron. 9, 695 (1966)

    Article  ADS  Google Scholar 

  46. J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, Electron transport of inhomogeneous Schottky barriers: a numerical study. J. Appl. Phys. 70, 7403 (1991)

    Article  ADS  Google Scholar 

  47. A.N. Saxena, Forward current-voltage characteristics of Schottky barriers on n-type silicon. Surf. Sci. 13, 151–171 (1969)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ç. Bilkan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilkan, Ç., Badali, Y., Fotouhi-Shablou, S. et al. On the temperature dependent current transport mechanisms and barrier inhomogeneity in Au/SnO2–PVA/n-Si Schottky barrier diodes. Appl. Phys. A 123, 560 (2017). https://doi.org/10.1007/s00339-017-1168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1168-y

Navigation