Skip to main content
Log in

Fe3O4 nanomaterials: synthesis, optical and electrochemical properties

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The magnetite Fe3O4 nanoparticles were synthesized via the hydrothermal process in the presence of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) as surfactants. The obtained products were characterized by X-ray powder diffraction, transmission electron microscopy, and ultraviolet-visible absorption spectroscopy. The electrochemical study of these products as advanced electrodes for supercapacitors was done using cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific capacity values deduced from the cyclic voltammetry experiments were found to increase in the following order: Fe3O4/without surfactant (34 F g−1) < Fe3O4/CTAB (44 F g−1 < Fe3O4/SDS (63 F g−1). The latter exhibited a specific discharge capacitance of 60 F g−1 that remained stable after 500 charge/discharge cycles. The improved electrochemical performance of Fe3O4/SDS may be due to the particle size and shape effects. As a result of the enhanced electrochemical performance, Fe3O4/SDS hybrids could be regarded as a promising electrode for Li/Na-ion batteries and supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sarno, M., Ponticorvo, E., Cirillo, C.: J Phys Chem Solids. 99, 138 (2016)

    Article  CAS  Google Scholar 

  2. Majumder, S., Dey, S., Bagani, K., Dey, S.K., Banerjee, S., Kumar, S.: Dalton Trans. 44, 7190 (2015)

    Article  CAS  Google Scholar 

  3. Zhang, J., Jiang, J., Li, H., Zhao, X.S.: A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ Sci. 4, 4009–4015 (2011)

    Article  CAS  Google Scholar 

  4. Sugimoto, W., Iwata, H., Yasunaga, Y., Murakami, Y., Takasu, Y.: Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. AngewChemInt Ed. 42, 4092–4096 (2003)

    CAS  Google Scholar 

  5. Fischer, A.E., Pettigrew, K.A., Rolison, D.R., Stroud, R.M., Long, J.W.: Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett. 7, 281–286 (2007)

    Article  CAS  Google Scholar 

  6. Liu, C., Li, F., Ma, L.P., Cheng, H.M.: Advanced materials for energy storage. Adv Mater. 22, E28–E62 (2010)

    Article  CAS  Google Scholar 

  7. Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. 38, 2520–2531 (2009)

    Article  CAS  Google Scholar 

  8. Grupioni, A., Lassali, T.: Effect of the Co3O4 introduction in the pseudo-capacitive behavior of IrO2-based electrode. J Electrochem Soc. 148, A1015–A1022 (2001)

    Article  CAS  Google Scholar 

  9. Du, X., Wang, C., Chen, M., Jiao, Y., Wang, J.: Electrochemical performance of nanoparticles Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. J Phys Chem C. 113, 2643–2646 (2009)

    Article  CAS  Google Scholar 

  10. Yang, C., Wub, J., Hou, Y.: Chem Commun. 47, 5130–5141 (2011)

    Article  CAS  Google Scholar 

  11. Wu, N.L., Wang, S.Y., Han, C.Y., Shiue, L.R.: Electrochemical capacitor of magnetite in aqueous electrolytes. J Power Sources. 113, 173 (2003)

    Article  CAS  Google Scholar 

  12. Cheng, H., Lu, Z., Ma, R., Dong, Y., Wang, H.E., Xi, L., Zheng, L., Tsang, C.K., Li, H., Chung, C.Y., Zapien, J.A., Li, Y.Y.: Rugated porous Fe3O4 thin films as stable binder-free anode materials for lithium ion batteries. J Mater Chem. 22, 22692–22698 (2012)

    Article  CAS  Google Scholar 

  13. Chen, Y., Xia, H., Lu, L., Xue, J.: Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries. J Mater Chem. 22, 5006–5012 (2012)

    Article  CAS  Google Scholar 

  14. Zhang, L., Wu, J., Liao, H., Hou, Y., Gao, S.: Octahedral Fe3O4 nanoparticles and their assembled structures. Chem Commun. 29, 4378–4380 (2009)

    Article  Google Scholar 

  15. Zhang, J., Yao, Y., Huang, T., Yu, A.: Low temperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high performance lithium storage. Electrochim Acta. 78, 502–507 (2012)

    Article  CAS  Google Scholar 

  16. K. C Chin, G. L Chong, C.KPoh, L. H Van, C. H Sow, J. Lin, A.T.S Wee, Large area, rapid growth of two-dimensional ZnO nanosheets and their field emission performances, J. Phys. Chem. C111 (2007) 9136–9141

  17. Huang, J., Chen, W., Zhao, W., Li, Y., Li, X., Chen, C.: Synthesis of nanoparticles for biomedical applications. J Phys Chem. C113, 12067–12071 (2009)

    Google Scholar 

  18. Zhang, D., Zhang, X., Ni, X., Song, J., Zheng, H.: Facile synthesis, shape evolution and magnetic properties of polyhedral 50-facet Fe3O4 nanocrystals partially enclosed by {311} high-index planes. Cryst Growth Des. 7, 2117–2119 (2007)

    Article  CAS  Google Scholar 

  19. Wang, Q., Jiao, L., Du, H., Wang, Y., Yuan, H.: Hydrothermal synthesis of Fe3O4/RGO composites and investigation of electrochemical performances for energy storage application. J Power Sources. 245, 101–106 (2014)

    Article  CAS  Google Scholar 

  20. Shokuhfar, A., Alibeigi, S., Vaezi, M.R., Sadrnezhaad, S.K.: Synthesis of Fe3O4 nanoparticles prepared by various surfactants and studying their characterizations. Defect and Diffusion Forum. 273-276, 22–27 (2008)

    CAS  Google Scholar 

  21. Miyake, Y., Tada, H.: Photocatalytic degradation of methylene blue with metal doped mesoporous titania under irradiation of white light. Chem J Eng Jpn. 37, 630–635 (2004)

    Article  CAS  Google Scholar 

  22. Tauc, J., Menth, A.: States in the gap. J Non-Cryst Solids. 8-10, 569–585 (1972)

    Article  CAS  Google Scholar 

  23. El-Diasty, F., El-Sayed, H.M., El-Hosiny, F.I., Ismail, M.I.M.: Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Cur Op Solid State Mat Science. 13, 28 (2009)

    Article  CAS  Google Scholar 

  24. Strehlow, W.H., Cook, E.L.: Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J Phys Chem. 2, 1 (1973)

    Google Scholar 

  25. Z. R. Marand, M. Helmi, R. Farimani, N. Shahtahmasebi, Study of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application, J Nanomed 1–4 (2014) 238–247

  26. Fujimori, A., Aeki, M., Kimizuka, N.: Photoemission satellites and electronic structure of Fe2O3. Phys Rev B. 34, 7318 (1986)

    Article  CAS  Google Scholar 

  27. Drager, G., Czolbe, W., Leiro, J.A.: High-energy-spectroscopy studies of a charge-transfer insulator: X-ray spectra of α-Fe2O3. Phys Rev B. 45, 8283 (1992)

    Article  CAS  Google Scholar 

  28. Itaya, K., Uchida, I., Neff, V.D.: Electrochemistry of polynuclear transition-metal cyanides - Prussian blue and its analogs. Acc Chem Res. 19, 162–168 (1986)

    Article  CAS  Google Scholar 

  29. Wessells, C.D., Huggins, R.A., Cui, Y.: Copper hexacyanoferrate battery electrodes with long cycle life and high. Power Nat Commun. 2, 550 (2011)

    Article  Google Scholar 

  30. Lu, K., Li, D., Gao, X., Dai, H., Wang, N., Ma, H.: Advanced aqueous sodium-ion supercapacitor with manganoushexacyanoferrate cathode and Fe3O4/rGO anode, J. Mater. Chem. A (2015). https://doi.org/10.1039/C5TA04244E

    Book  Google Scholar 

  31. Zheng Chen, Veronica Augustyn, XilaiJia, Qiangfeng Xiao, Bruce Dunn, and Yunfeng Lu, High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites, ACS –NANO. 6(2012) 4319–4327

  32. Su, L., Winnick, J., Kohl, P.: Sodium insertion into vanadium pentoxide in methanesulfonyl chloride-aluminum chloride ionic liquid. J Power Sources. 101, 226–230 (2001)

    Article  CAS  Google Scholar 

  33. Du, X., Wang, C., Chem, M., Jiao, Y., Wang, J., Phys, J.: Chem C. 113, 2643–2646 (2009)

    CAS  Google Scholar 

  34. Wang, S.Y., Ho, K.C., Kuo, S.L., Wu, N.L.: J Electrochem Soc. 153(1), A75–A80 (2006)

    Article  CAS  Google Scholar 

  35. S.LKuo, N. L Wu, Electrochemical capacitor of MnFe2O4 with organic Li-ion electrolyte, Electrochem Solid-State Lett. A 10 (2007) 171–175

  36. P. Vassilaras, A.JToumar, G. Ceder, Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries, Electroch Comm. 38 (2014)79–81

  37. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 407, 496–499 (2000)

    Article  CAS  Google Scholar 

  38. M. G Kim, J. Cho,Reversible and high-capacity nanostructured electrode materials for Li-ion batteries, Adv. Funct. Mater.19 (2009) 1497

  39. Qinghong Wang, Lifang Jiao, HongmeiDu ,Yijing Wang , Huatang Yuan. Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. Journal of Power Sources. 245 (2014) 101–106

  40. Dahui Guan, ZanGao, Wanlu Yang, Jun Wang, Yao Yuan, Bin Wang, Milin Zhang, Lianhe Liu. Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material, Materials Science and Engineering. B 178 (2013) 736–743

  41. Yuan, K., Ni, Y., Zhang, L.: Facile hydrothermal synthesis of polyhedral Fe3O4 nanocrystals, influencing factors and application in the electrochemical detection of H2O2. J Alloys Compd. 532, 10–15 (2012)

    Article  CAS  Google Scholar 

  42. Xu, Y., Zhang, Y., Song, X., Liu, H.: Facile hydrothermal synthesis of Fe3O4 nanoparticle and effect of crystallinity on performances for supercapacitor. Funct Mater Lett. 12, 1950019 (2018)

    Article  Google Scholar 

  43. Luborsky, F.E.: Amorphous metallic alloys. Butterworths, London (1983)

    Book  Google Scholar 

  44. Ku, J.H., Ryu, J.H., Kim, S.H., Han, O.H., Oh, S.M.: Adv Funct Mater. 22, 3658 (2012)

    Article  CAS  Google Scholar 

  45. Uchaker, E., Zheng, Y.Z., Li, S., Candelaria, S.L., Hu, S., Cao, G.Z.: J Mater Chem A. 2, 18208 (2014)

    Article  CAS  Google Scholar 

  46. H. Wei, S. Wei, W. Tian, D. Zhu, Y. Liu, L. Yuan&X. Li, Fabrication of thickness controllable free-standing sandwich-structured hybrid carbon film for high-rate and high-power supercapacitor, Scientific reports /4:7050/ https://doi.org/10.1038/srep07050

  47. A. Vioux,B. Coasne,From ionogels to biredox ionic liquids: some emerging opportunities for electrochemical energy storage and conversion devices, Adv. Energy Mater. 7(22)(2017) 1700883

  48. Luan, Y., Hu, R., Fang, Y.Z., Zhu, K., Cheng, K., Yan, J., Ye, K., Wang, G., Cao, D.: Nitrogen and phosphorus dual-doped multilayer graphene as universal anode for full carbon-based lithium and potassium ion capacitors. Nano-Micro Lett. 11, 30 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by the Ministry of Higher Education and Scientific Research of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Kouass.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouchaine, A., Kouass, S., Touati, F. et al. Fe3O4 nanomaterials: synthesis, optical and electrochemical properties. J Aust Ceram Soc 57, 469–477 (2021). https://doi.org/10.1007/s41779-020-00544-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00544-3

Keywords

Navigation