Skip to main content
Log in

Achieving Both High d 33 and High Q m for the Pb(Zr0.26Sn0.26Ti0.48)1−x Fe x O3−x/2 Ternary System for Use in High-Power Ultrasonic Transducers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

For applications in high power ultrasonic transducers, both high piezoelectric coefficients d 33 and high mechanical quality factor Q m are essential. In this work, acceptor-doped Pb(Zr0.26Sn0.26Ti0.48)1−x Fe x O3−x/2 ferroelectric ceramics with compositions near the morphotropic phase boundary were prepared by routine solid-state reaction. By introducing Fe3+ ion into the perovskite crystal lattices, defect dipoles resulting from Fe3+ ions and oxygen vacancies are formed, pinning extrinsic domain wall motion, and hence increasing Q m but reducing d 33. It was found that substitution with 0.5 mol% Fe3+ resulted in high d 33 (390 pC/N) and high Q m (540). The nonlinear dielectric responses of these ceramics were evaluated on the basis of the Rayleigh law. Both Rayleigh coefficients, \(\alpha\) and \(\kappa_{\rm{init}},\) are reduced by doping with the acceptor ion Fe3+, indicating that the intrinsic contribution and reversible domain wall mobility are both reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook Jr, and H. Jaffe, Piezoelectric Ceramics (New York: Academic, 1971).

    Google Scholar 

  2. S. Zhang and F. Li, J. Appl. Phys. 111, 031301 (2012).

    Article  Google Scholar 

  3. Q. Liao, X. Chen, X. Chu, F. Zeng, and D. Guo, Sens. Actuators A 201, 222 (2013).

    Article  Google Scholar 

  4. L. Shi, Q. Liao, B. Zhang, J. Zhang, and D. Guo, Mater. Lett. 114, 100 (2014).

    Article  Google Scholar 

  5. S. Zhang, S.-M. Lee, D.-H. Kim, H.-Y. Lee, and T.R. Shrout, Appl. Phys. Lett. 93, 122908 (2008).

    Article  Google Scholar 

  6. S. Zhang, S. Member, F. Li, J. Luo, and R. Sahul, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 1572 (2013).

    Article  Google Scholar 

  7. S. Zhang and T. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2138 (2010).

    Article  Google Scholar 

  8. F. Xu, S. Trolier-McKinstry, W. Ren, B. Xu, Z.-L. Xie, and K.J. Hemker, J. Appl. Phys. 89, 1336 (2001).

    Article  Google Scholar 

  9. V. Porokhonskyy, L. Jin, and D. Damjanovic, Appl. Phys. Lett. 94, 212906 (2009).

    Article  Google Scholar 

  10. L. Jin, V. Porokhonskyy, and D. Damjanovic, Appl. Phys. Lett. 96, 242902 (2010).

    Article  Google Scholar 

  11. D. Damjanovic, N. Klein, J. Li, and V. Porokhonskyy, Funct. Mater. Lett. 3, 5 (2010).

    Article  Google Scholar 

  12. K. Carl and K.H. Härdtl, Ferroelectrics 17, 473 (1977).

    Article  Google Scholar 

  13. R.-A. Eichel, J. Electroceram. 19, 9 (2007).

    Article  Google Scholar 

  14. L. Jin, Z. He, and D. Damjanovic, Appl. Phys. Lett. 95, 012905 (2009).

    Article  Google Scholar 

  15. P. Jakes, E. Erdem, R.-A. Eichel, L. Jin, and D. Damjanovic, Appl. Phys. Lett. 98, 072907 (2011).

    Article  Google Scholar 

  16. L. Zhang and X. Ren, Phys. Rev. B 71, 174108 (2005).

    Article  Google Scholar 

  17. E. Buixaderas, D. Nuzhnyy, J. Petzelt, L. Jin, and D. Damjanovic, Phys. Rev. B 84, 184302 (2011).

    Article  Google Scholar 

  18. E. Buixaderas, D. Nuzhnyy, P. Vaněk, I. Gregora, J. Petzelt, V. Porokhonskyy, L. Jin, and D. Damjanović, Phase Transit. 83, 917 (2010).

    Article  Google Scholar 

  19. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999).

    Article  Google Scholar 

  20. M. Marsilius, K.G. Webber, E. Aulbach, and T. Granzow, J. Am. Ceram. Soc. 93, 2850 (2010).

    Article  Google Scholar 

  21. C.A. Randall, N. Kim, J. Kucera, W. Cao, and T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998).

    Article  Google Scholar 

  22. L. Pdungsap, S. Boonyeun, P. Winotai, N. Udomkan, and P. Limsuwan, Eur. Phys. J. B 48, 367 (2005).

    Article  Google Scholar 

  23. D. Berlincourt, H.H.A. Krueger, and B. Jaffe, J. Phys. Chem. Solids 25, 659 (1964).

    Article  Google Scholar 

  24. P. Yang and D.A. Payne, J. Appl. Phys. 71, 1361 (1992).

    Article  Google Scholar 

  25. Z. Xing, L. Jin, Y. Feng, and X. Wei, J. Electron. Mater. 43, 2614 (2014).

    Article  Google Scholar 

  26. B. Jaffe, R.S. Roth, and S. Marzullo, J. Res. Natl. Bur. Stand. 55, 239 (1955).

    Article  Google Scholar 

  27. F. Li, S. Zhang, Z. Xu, X. Wei, and T.R. Shrout, Adv. Funct. Mater. 21, 2118 (2011).

    Article  Google Scholar 

  28. F. Li, L. Jin, Z. Xu, and S. Zhang, Appl. Phys. Rev. 1, 011103 (2014).

    Article  Google Scholar 

  29. K.P. Rema, V.K. Etacheri, and V. Kumar, J. Mater. Sci. 21, 1149 (2009).

    Google Scholar 

  30. G.H. Haertling and C.E. Land, J. Am. Ceram. Soc. 54, 1 (1971).

    Article  Google Scholar 

  31. G.H. Haertling, Ferroelectrics 75, 25 (1987).

    Article  Google Scholar 

  32. G. Arlt, D. Hennings, and G. de With, J. Appl. Phys. 58, 1619 (1985).

    Article  Google Scholar 

  33. B.D. Begg, E.R. Vance, and J. Nowotny, J. Am. Ceram. Soc. 77, 3186 (1994).

    Article  Google Scholar 

  34. W. Cao and C.A. Randall, J. Phys. Chem. Solids 57, 1499 (1996).

    Article  Google Scholar 

  35. M.J. Hoffmann, M. Hammer, A. Endriss, and D.C. Lupascu, Acta Mater. 49, 1301 (2001).

    Article  Google Scholar 

  36. L. Dong, D.S. Stone, and R.S. Lakes, J. Appl. Phys. 111, 084107 (2012).

    Article  Google Scholar 

  37. M.I. Morozov and D. Damjanovic, J. Appl. Phys. 107, 034106 (2010).

    Article  Google Scholar 

  38. G. Schmidt, Ferroelectrics 78, 199 (1988).

    Article  Google Scholar 

  39. K. Uchino and S. Nomura, Ferroelectr. Lett. 44, 55 (1982).

    Article  Google Scholar 

  40. S.M. Pilgrim, A.E. Sutherland, and S.R. Winzer, J. Am. Ceram. Soc. 73, 3122 (1990).

    Article  Google Scholar 

  41. L. Jin, F. Li, and S. Zhang, J. Am. Ceram. Soc. 97, 1 (2014).

    Article  Google Scholar 

  42. D.A. Hall and P.J. Stevenson, Ferroelectrics 228, 139 (1999).

    Article  Google Scholar 

  43. D.A. Hall, J. Mater. Sci. 6, 4575 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant No. 51202183), the Fundamental Research Funds for the Central Universities, the International Science and Technology Cooperation Program of China (Grant No. 2013DFR50470) and the “111” project (Grant No. B14040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyong Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Z., Jin, L., Wang, T. et al. Achieving Both High d 33 and High Q m for the Pb(Zr0.26Sn0.26Ti0.48)1−x Fe x O3−x/2 Ternary System for Use in High-Power Ultrasonic Transducers. J. Electron. Mater. 43, 3905–3911 (2014). https://doi.org/10.1007/s11664-014-3311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3311-2

Keywords

Navigation