Skip to main content
Log in

Exploration of Gas Discharges with GaAs, GaP and ZnSe Electrodes Under Atmospheric Pressure

  • Topical Collection: Electronic Materials for Renewable Energy Applications
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work reports on the electrical and optical characterization of the atmospheric pressure glow discharge regimes for different semiconductor electrodes made of GaAs, GaP and ZnSe. The discharge cell is driven by DC feeding voltages at a wide pressure range of 0.66–120 kPa in argon and air media for different interelectrode gaps. The discharge phenomena including different stages of discharges such as glow and Townsend breakdown have been examined. In addition, the infrared sensitivities of the semiconducting materials are evaluated in the micro-discharge cell and discharge light emission measurements have been performed. The qualities of the semiconducting electrode samples can be determined by seeking the homogeneity of the discharge light emission for the optoelectronic device applications. Operation of optical devices under atmospheric pressures gives certain advantages for manufacturing of the devices including the material processing and surface treatment procedures. Besides, finite element analyses of the overall experimental system have been performed for the abovementioned semiconductors. The electron densities and potential patterns have been determined on the discharge cell plane between the electrodes. The findings have proven that the electron densities along the plasma cell depend on both the semiconductor type and plasma parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Mangolini, K. Orlov, U. Kortshagen, J. Heberlein, and U. Kogelschatz, Appl. Phys. Lett. 80, 1722 (2002).

    Article  Google Scholar 

  2. S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D 21, 838 (1988).

    Article  Google Scholar 

  3. S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, Nucl. Instrum. Methods Phys. Res. B. 37, 842 (1989).

    Article  Google Scholar 

  4. S. Zhang, A. Sobota, E.M.V. Veldhuizen, and P.J. Bruggeman, Plasma Sources Sci. Technol. 24, 045015 (2015).

    Article  Google Scholar 

  5. J.F. Kolb, A.A.H. Mohamed, R.O. Price, R.J. Swanson, A. Bowman, R.L. Chiavarini, M. Stacey, and K.H. Schoenbach, Appl. Phys. Lett. 92, 241501 (2008).

    Article  Google Scholar 

  6. Y.H.H. Wang and X. Wang, Phys. Plasmas 19, 012308 (2012).

    Article  Google Scholar 

  7. A. Begum, M. Laroussi, and M.R. Pervez, AIP Adv. 3, 062117 (2013).

    Article  Google Scholar 

  8. J. Hong, Atmospheric Pressure Plasma Chemical Deposition by Using Dielectric Barrier Discharge System (Thesis for Master of Sciences, University of Illinois at Urbana Champaign, 2013).

  9. D. Mariotti, T. Belmonte, J. Benedikt, T. Velusamy, G. Jain, and V. Svrcek, Plasma Process. Polym. 13, 70 (2016).

    Article  Google Scholar 

  10. M. Cr Penache, Study of High-Pressure Glow Discharges Generated by Micro-structured Electrode (MSE) Arrays (Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften, von aus Bukarest, Rumänien Frankfurt am Main, 2002).

  11. Y.P. Raizer, Gas Discharge Physics (Berlin: Springer, 1997).

    Google Scholar 

  12. H.H. Kurt and E. Tanrıverdi, J. Electron. Mater. 46, 4024 (2017).

    Article  Google Scholar 

  13. H.Y. Kurt, A. İnalöz, and B.G. Salamov, Optoelectron. Adv. Mater. Rapid Commun. 4, 205 (2010).

    Google Scholar 

  14. D. Zhang, Y. Wang, and D. Wang, Phys. Plasmas 20, 063504 (2013).

    Article  Google Scholar 

  15. Q. Wang, D.J. Economou, and V.M. Donnelly, J. Appl. Phys. 100, 023301 (2006).

    Article  Google Scholar 

  16. M.M. Iqbal, Computational Investigations of Atmospheric Pressure Discharges (Thesis Submitted for the degree of Philosophiae Doctor Presented to Dublin City University, School of Physical Sciences Dublin City University, 2009).

  17. J. Dahl, Spectroscopic Studies of III–V Semiconductor Materials for Improved Devices (Thesis Submitted for University of Turku, 2015).

  18. M. Jurisch, H. Jacob, and T. Flade, Supplementing Silicon: The Compound Semiconductors. Silicon, ed. P. Siffert and E.F. Krimmel (Berlin: Springer, 2004), pp. 423–461.

    Chapter  Google Scholar 

  19. B. Green and C. Weitzel C, A Brief History of GaAs Technology at the GaAs IC Symposium and a Look Ahead to the 2015 CSICS [Speakers’ Corner]; MMM August 2015, pp. 120–123.

  20. P.Y. Yu and M. Cardona, Fundamentals of Semiconductors Physics and Materials Properties, 4th ed. (Berlin: Springer, 2010).

    Book  Google Scholar 

  21. P. Zhang and U. Kortshagen, J. Phys. D Appl. Phys. 39, 153 (2006).

    Article  Google Scholar 

  22. T. Martens, W.J.M. Brok, J.V. Dijk, and A. Bogaerts, J. Phys. D Appl. Phys. 42, 122002 (2009).

    Article  Google Scholar 

  23. X.C. Li, N. Zhao, T.Z. Fang, Z.H. Liu, L.C. Li, and L.F. Dong, Plasma Sources Sci. Technol. 17, 015017 (2008).

    Article  Google Scholar 

  24. D. Dai, H.X. Hou, and Y.P. Hao, Appl. Phys. Lett. 98, 131503 (2011).

    Article  Google Scholar 

  25. Y. Ha, H.J. Wang, and X.F. Wang, Phys. Plasmas 19, 012308 (2012).

    Article  Google Scholar 

  26. B.G. Salamov, N.N. Lebedeva, H.Y. Kurt, V.I. Orbukh, and E.Y. Bobrova, J. Phys. D Appl. Phys. 39, 2732 (2006).

    Article  Google Scholar 

  27. B.G. Salamov and H.Y. Kurt, J. Phys. D Appl. Phys. 38, 682 (2005).

    Article  Google Scholar 

  28. H. Kurt, E. Koc, and B.G. Salamov, IEEE Trans. Plasma Sci. 38, 137 (2010).

    Article  Google Scholar 

  29. H.H. Kurt and E. Tanrıverdi, J. Electron. Mater. 46, 3965 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hilal Kurt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurt, H.H. Exploration of Gas Discharges with GaAs, GaP and ZnSe Electrodes Under Atmospheric Pressure. J. Electron. Mater. 47, 4444–4454 (2018). https://doi.org/10.1007/s11664-018-6161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6161-5

Keywords

Navigation