Skip to main content

Supplementing Silicon: the Compound Semiconductors

  • Chapter
Silicon

Abstract

For a long time, the compound semiconductors, especially gallium arsenide, were believed to be the basic materials for a new generation of solid-state electronics which would replace silicon after the latter had reached its expected physical limits. This expectation turned out to be wrong. GaAs and other compound semiconductors did not replace silicon, but have found commercial application side by side with silicon, and have reached maturity and mass-production level for certain microelectronic and optoelectronic devices during the last decade of the last century. Therefore, compound semiconductors are no longer regarded as competitors to the elemental semiconductor silicon (and germanium), but as a necessary supplement, owing to some unique physical properties compared with silicon, although their production scale is and will be considerably less than that of Si. As the consumers of devices do not care about the technology utilized in the device, there are and will be overlapping fields of potential applications where devices based on silicon and on compound semiconductors will compete on the basis of performance, compatibility, price per die, etc. This has led in the past and will lead in the future to shifts of market shares between them. A convincing present-day example is the development of germanium-alloyed silicon, Sil − x , Ge x , which is replacing the compound semiconductor GaAs in some areas of high-frequency microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Seidl: 50 Jahre III-V-Halbleiter: ein Blick in die Originalliteratur. dgkkMitteilungsblatt 75, 19 (2002)

    Google Scholar 

  2. K. Jacobs: Einige Ergänzungen zur Geschichte der III—V-Halbleiter. dgkkMitteilungsblatt 76, 17 (2002)

    Google Scholar 

  3. R. Gremmelmaier: Herstellung von InAs-und GaAs-Einkristallen. Z. Naturfor. lla, 511 (1956)

    Google Scholar 

  4. A. Steinemann, U. Zimmerli: Dislocation-free gallium arsenide single crystals. In: H.S. Peiser (ed.): Crystal Growth ( Pergamon Press, Oxford 1967 ) pp. 81–87

    Google Scholar 

  5. J.P. Mullin, B.W. Straughan, W.S. Brickell: Liquid encapsulation crystal pulling at high pressure. Phys. Chem. Solids 26, 782 (1965)

    Article  CAS  Google Scholar 

  6. E.P.A. Metz, R.C. Miller, R. Mazelsky: A technique for pulling single crystals of volatile materials. J. Appl. Phys. 33, 2016 (1962)

    Article  CAS  Google Scholar 

  7. A. Azuma: Method and device for producing compound single crystal with high dissociation. Japan. Patent 60–11299 (1983)

    Google Scholar 

  8. H. Kohda, K. Yamada, H. Nakanishi, T. Kobayashi, J. Osaka, K. Hoshikawa: Crystal growth of completely dislocation-free and striation-free GaAs. J. Cryst. Growth 71, 813 (1985)

    Article  CAS  Google Scholar 

  9. N.S. Beljackaja, S.P. Grishina: Study of the dislocation structure in GaAs single crystals (in Russian). Izvest. AN Neorg. Mater. 3, 1347 (1967)

    Google Scholar 

  10. W.A. Gault, E.M. Monberg, J.E. Clemans: A novel application of the vertical gradient freeze method to the growth of high quality III-V crystals. J. Cryst. Growth 74, 491 (1986)

    Article  CAS  Google Scholar 

  11. R. Hull (ed.): Properties of Crystalline Silicon, EMIS Datareviews Series No. 20, ( INSPEC IEE, London 1999 )

    Google Scholar 

  12. M.R. Brozel, G.E. Stillman (eds.): Properties of Gallium Arsenide, Emis Datareview Series No. 16, ( INSPEC IEE, London 1996 )

    Google Scholar 

  13. T.P. Pearsall (ed.): Properties, processing and applications of Indium Phoshide, Emis Datareviews Series No. 21, ( INSPEC IEE, London 2000 )

    Google Scholar 

  14. O. Madelung (ed.): Semiconductors - Group IV elements and III-V compounds ( Springer, Berlin, Heidelberg, New York 1991 )

    Google Scholar 

  15. J.H. Edgar, S. Strite, I. Akasaki, H. Amano, C. Wetzel (eds.): Properties, processing and applications of gallium nitride and related semiconductors, Emis Datareviews Series No. 23, (INSPEC IEE 1999 )

    Google Scholar 

  16. Landolt-Börnstein. In: Semiconductors, ed. by O. Madelung, M. Schulz, H. Weiss ( Springer-Verlag, Berlin, 1984 ) pp. 12–34

    Google Scholar 

  17. J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi: Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 80, 3967–3969 (2003)

    Article  Google Scholar 

  18. S.M. Sze: High Speed Semiconductor Devices ( John Wiley and Sons, New York Chichester Brisbane Toronto Singapore 1990 ), p. 543

    Google Scholar 

  19. http://www.ioffe.rssi.ru/SVA/NSM

    Google Scholar 

  20. A.S. Jordan, A.R. von Neida, R. Caruso: The theoretical and experimental fundamentals of decreasing dislocations in melt grown GaAs and InP. J. Crystal Growth 76, 243–262 (1986)

    Article  Google Scholar 

  21. G.O. Meduoye, D.J. Bacon, K.E. Evans: Computer modelling of temperature and stress distribution in LEC-grown GaAs crystals. J. Crystal Growth 108, 627–636 (1991)

    Article  CAS  Google Scholar 

  22. A.S. Jordan: Some thermal and mechanical properties of InP essential to crystal growth modeling. J. Crystal Growth 71, 559–565 (1985)

    Article  CAS  Google Scholar 

  23. H. Gottschalk, G. Patzer, H. Alexander: Stacking fault energy and ionicity of cubic III V compounds. phys. stat. sol. (a) 45, 207–217 (1978)

    CAS  Google Scholar 

  24. F. Berger, U. Bergmann, M. Schaper, R. Hammer, M. Jurisch: Microhardness testing of GaAs single crystals. Materialprüfung 4, 117–122 (2001)

    Google Scholar 

  25. K. Yasutake, Y. Konishi, K. Adachi, K. Yoshii, M. Umeno, H. Kawabe: Fracture of GaAs wafers. Jpn. J. Appl. Phys. 27, 2238–2246 (1988)

    Article  CAS  Google Scholar 

  26. I. Yoneanga, T. Hoshi, A. Usui: High temperature hardness of bulk single crystal GaN. MRS Internet J. Nitride Semicond. Res 5S1, W3. 90 (2000)

    Google Scholar 

  27. M. Tatsumi, K. Fujita: Melt growth of GaAs single crystals. In: Recent Development of Bulk Crystal Growth, ed. by M. Isshiki ( Research Signpost, Trivandrum, India, 1998 ) pp. 47–95

    Google Scholar 

  28. R.E. Kremer, R. Bindemann, S. Teichert: GaAs substrate production: optimization for cost and device type. In: Compound Semiconductor Manufacturing Expo, November 11–13, 2002, San Jose, CA

    Google Scholar 

  29. R. Bindemann: Volume production of GaAs substrates optimized with respect to characteristics and costs of device type and process technology. In: Gorham Conference Europe, June 17–19, 2002, Copenhagen

    Google Scholar 

  30. H. Wenzl, W.A. Oates, K. Mika: Defect thermodynamics and phase diagrams in compound crystal growth processes. In: D.T.J. Hurle (ed.): Handbook of Crystal Growth, vol. lA (North-Holland, Amsterdam 1993 ) pp. 103–186

    Google Scholar 

  31. J. Korb, T. Flade, M. Jurisch, A. Köhler, T. Reinhold, B. Weinert: Carbon, oxygen, boron, hydrogen and nitrogen in the LEC growth of SI GaAs: a thermochemical approach. J. Cryst. Growth 198 /199, 343 (1999)

    Article  Google Scholar 

  32. C.G. Kirkpatrick, R.T. Chen, D.E. Holmes, P.M. Asbeck, K.R. Elliott, R.D. Fairman, J.R. Oliver: LEC GaAs for integrated circuit application. In: R.K. Willardson, A.C. Beer (eds.): Semiconductors and Semimetals, Vol. 20 ( Academic Press, New York 1984 ) pp. 159–231

    Google Scholar 

  33. D.T.J. Hurle: A mechanism for twin formation during Czochralski and encapsulated vertical Bridgman growth of III-V compound semiconductor. J. Cryst. Growth 147, 239 (1995)

    Article  CAS  Google Scholar 

  34. K. Terashima: Control of growth parameters for obtaining highly uniform large diameter LEC GaAs. In: Semi-Insulating III-V Materials, ed. by G. Grossmann, L. Ledebo ( IOP Publishing, Bristol 1988 ) pp. 413–422

    Google Scholar 

  35. E. Molva, P. Bunod, A. Chabli, A. Lombardot, S. Dubois, F. Berth’: Origin of microscopic inhomogeneities in bulk gallium arsenide. J. Cryst. Growth 103, 91 (1990)

    Article  CAS  Google Scholar 

  36. O. Oda, H. Yamamoto, K. Kainosho, T. Imaizumi, H. Okazak: Recent developments of bulk III-V materials: annealing and defect control. In: J. Jimenez (ed.): Defect Recognition and Image Processing in Semiconductors and Devices, Vol. 135 ( IOP Publishing, Bristol 1994 ) pp. 285–294

    Google Scholar 

  37. B. Hoffmann: Ein Beitrag zur thermischen Nachbehandlung von semiisokierenden LEC-GaAs-Einkristallen und -Scheiben. PhD Thesis, Universität Erlangen-Nürnberg (1996)

    Google Scholar 

  38. T. Steinegger: Defect engineering. PhD Thesis, TU Bergakademie Freiberg (2001)

    Google Scholar 

  39. F. Wirbeleit: The atomic structure of point defects in semiconductors by improved EPR/ENDIR data analysis. PhD Thesis, TU Bergakademie Freiberg (1998)

    Google Scholar 

  40. D.E. Holmes, R.T. Chen, K.R. Elliott, C.G. Kirkpatrick: Stoichiometrycontrolled compensation in liquid encapsuled Czochralski GaAs. Appl. Phys. Lett. 40, 46 (1982)

    Article  CAS  Google Scholar 

  41. P.M. Petroff, L.C. Kimerling: Dislocation climb model in compound semiconductors with zinc blende structures. Appl. Phys. Lett. 29, 461 (1976)

    Article  CAS  Google Scholar 

  42. W.A. Oates, H. Wenzl: Foreign atom thermodynamics in liquid gallium arsenide. J. Cryst. Growth 191, 303 (1998)

    Article  CAS  Google Scholar 

  43. http://gttserv.lth.rwth-aachen.de/gtt/

    Google Scholar 

  44. M. Jurisch, D. Behr, R. Bindemann, T. Bänger, T. Flade, W. Fliegel, R. Hammer, S. Wilzig, A. Kiesel, A. Kleinwechter, A. Köhler, U. Kretzer, A. Seidl, B. Weinert: State-of-the-art semi-insulating GaAs substrates. In: K.H. Ploog, G. Tränkle, G. Weirnann (eds.): Compound Semiconductors 1999, Vol. 166 ( IOP Publishing, Bristol 2000 ) pp. 13–22

    Google Scholar 

  45. T. Bünger, J. Stenzenberger, F. Börner, U. Kretzer, S. Eichler, M. Jurisch, R. Bindemann, B. Weinert, S. Teichert, T. Flade: Active carbon control during the VGF growth of semiinsulating GaAs. In: GaAs ManTech2003, May 19–22, 2003, Scottsdale, AZ

    Google Scholar 

  46. S. Eichler, A. Seidl, F. Börner, U. Kretzer, B. Weinert: A combined carbon and oxygen segregation model for the LCE growth of SI GaAs. J. Cryst. Growth 247, 69 (2003)

    Article  CAS  Google Scholar 

  47. J. Völkl: Stress in the cooling crystal. In: D.T.J. Hurle (ed.): Handbook of Crystal Growth, Vol. 2B ( North-Holland, Amsterdam 1994 ) pp. 821–874

    Google Scholar 

  48. http://www.wafertech.co.uk

    Google Scholar 

  49. P. Bennema: Growth and morphology of crystals. Integration of theories of roughening and Hartman—Perdock theory. In: D.T.J. Hurle (ed.): Handbook of Crystal Growth, Vol. lA (North-Holland, Amsterdam 1993 ) pp. 477–581

    Google Scholar 

  50. A. Anwar: GaAs Bulk and Epitaxial Wafers Markets and Trends. Strategy Analytics, www.strategyanalytics.com (2002)

    Google Scholar 

  51. D.T.J. Hurle, B. Cockayne: Czochralski growth. In: D.T.J. Hurle (ed.): Handbook of Crystal Growth, Vol. 2A ( North-Holland, Amsterdam 1994 ) pp. 99–211

    Google Scholar 

  52. T. Flade, M. Jurisch, A. Kleinwechter, A. Köhler, U. Kretzer, J. Prause, T. Reinhold, B. Weinert: State of the art 6“ SI GaAs wafers made of conventionally grown LEC-crystals. J. Cryst. Growth 198 /199, 336 (1999)

    Article  Google Scholar 

  53. A. Seidl, S. Eichler, T. Flade, M. Jurisch, A. Köhler, U. Kretzer, B. Weinert: 200 mm GaAs crystal growth by the temperature gradient controlled LEC method. J. Cryst. Growth 225, 561 (2001)

    Article  CAS  Google Scholar 

  54. T. Inada, S. Komata, M. Ohnishi, M. Wachi, H. Akiyama, Y. Otoki: Development of mass production line for 150 mm GaAs wafers. Irr: GaAs ManTech1999, April 19–22, 1999, Vancouver, British Columbia, Canada, pp. 205–208

    Google Scholar 

  55. M. Shibata, T. Inada, S. Kuma: Huge single crystals of GaAs grown by LEC method. Denshi Tokyo 32, 119 (1993)

    Google Scholar 

  56. M. Neubert, P. Rudolph: Growth of semi-insulating GaAs crystals in low temperature gradients by using the vapour pressure controlled Czochralski method (VCz). Progress in Crystal Growth and Characterization of Materials 43, 119 (2001)

    Article  CAS  Google Scholar 

  57. K. Kohiro, K. Kainosho, O. Oda: Growth of low dislocation density InP single crystals by the phosphorus vapor controlled LEC method. J. Electron. Mater. 20, 1013 (1991)

    Article  CAS  Google Scholar 

  58. http://www.axt.com

    Google Scholar 

  59. H.C. Rampsperger, E.H. Melvin: The preparation of large single crystals. J. Opt. Soc. Am. 15, 359 (1927)

    Article  Google Scholar 

  60. K. Sonnenberg, E. Küssel: Developments in vertical Bridgman growth of large diameter GaAs. III Vs Rev. 10, 30 (1997)

    Article  Google Scholar 

  61. J.E. Clemons, E.M. Monberg: Crystal growth method. US Patent 4,923, 561 (1990)

    Google Scholar 

  62. E. Monberg: Bridgman and related growth techniques. In: D.T.J. Hurle (ed.): Handbook of Crystal Growth, Vol. 2A ( North-Holland, Amsterdam 1994 ) pp. 51–97

    Google Scholar 

  63. J. Stenzenberger, T. Winger, F. Börner, S. Eichler, T. Flade, R. Hammer, M. Jurisch, U. Kretzer, S. Teichert, B. Weinert: Growth and characterization of 200 mm SI GaAs single crystals grown by the VGF method. J. Cryst. Growth 250, 57 (2003)

    Article  CAS  Google Scholar 

  64. H. Yamamoto, O. Oda, M. Seiwa, M. Taniguchi, H. Nakata, M. Ejima: Microscopic defects in Semi-insulating GaAs and their effect on the FET device performance. J. Electrochem. Soc. 136, 3089 (1989)

    Article  Google Scholar 

  65. R. Stibal, J. Windscheif, W. Jantz: Contactless evaluation of semi-insulating GaAs wafer resistivity using the time-dependent charge measurement. Semicond. Sci. Technol. 6, 995 (1991)

    Article  CAS  Google Scholar 

  66. W. Siegel, G. Kühnel, C. Reichel, M. Jurisch, B. Hoffmann: High-resolution resistivity mapping of bulk semi-insulating GaAs by point-contact technique. Mater. Sci. Eng. B 44, 238 (1997)

    Article  Google Scholar 

  67. H.D. Geiler, M. Wagner, H. Karge, M. Paulsen, R. Schmolke: Photoelastic stress evaluation and defect monitoring in 300-mm-wafer manufacturing. Mater. Sci. in Semiconductor Processing 5, 445 (2003)

    Google Scholar 

  68. M. Schaper, M. Jurisch, H.J. Klauß, H. Balke, F. Bergner, R. Hammer, M. Winkler: Fracture strength of GaAs wafers. In: B. Michel, T. Winkler, M. Werner, H. Fecht (eds.): Proceedings Micro Materials ( Verlag ddp goldenbogen, Dresden 2000 ) pp. 570–573

    Google Scholar 

  69. S. Kuma, Y. Otoki: Usefulness of light scattering tomography for GaAs industry. In: J. Jimenez (ed): Defect Recognition and Image Processing in Semiconductors and Devices Vol. 135 ( IOP Publishing, Bristol 1994 ) pp. 117–126

    Google Scholar 

  70. H.C. Alt, Y. Gomeniuk, U. Kretzer: Far-infrared spectroscopy of shallow acceptors in semi-insulating GaAs: evidence for defect interactions with EL2. Phys. Stat. Sol. (b) 235, 58 (2002)

    Article  Google Scholar 

  71. W. Siegel, S. Schulte, G. Kühnel, J. Monecke: Hall mobility lowering in un-doped n-type bulk GaAs due to cellular-structure related nonuniformities. J. Appl. Phys. 81, 3155 (1997)

    Article  CAS  Google Scholar 

  72. P.D. Green: Growth of GaAs ingots with high free electron concentrations. J. Cryst. Growth 50, 612 (1980)

    Article  Google Scholar 

  73. R.C. Newman: The lattice location of silicon impurities in GaAs: effects due to stoichiometry, the Fermi energy, the solubility limit and DX behaviour. Semicond. Sci. Technol. 9, 1749 (1994)

    Article  CAS  Google Scholar 

  74. T. Kawase, H. Yoshida, T. Sakurada, Y. Hagi, K. Kaminaka, H. Miyajima, S. Kawarabayahi, N. Toyoda, M. Kiyama, S. Sawada, R. Nakai: Properties of 6-inch semi-insulating GaAs substrates manufactured by vertical boat method. In: GaAs ManTech1999, April 19–22, 1999, Vancouver, British Columbia, Canada, pp. 125–128

    Google Scholar 

  75. F. Duderstadt: Anwendung der von Karman’schen Plattentheorie and der Hertz’schen Pressung für die Spannungsanalyse zur Biegung von GaAs Wafern im modifizierten Doppelringtest. PhD Thesis, Technische Universität Berlin (2003)

    Google Scholar 

  76. A. Kleinwechter, T. Bänger, T. Flade, M. Jurisch, A. Köhler, U. Kretzer, A. Seidl, B. Weinert: Mass production of large-size GaAs wafers at FREIBERGER. In: GaAs ManTech2001, May 21–24, 2001, Las Vegas, NV, pp. 57–60

    Google Scholar 

  77. R. Hammer: Mikrorissbildung im GaAs and deren Nutzung beim Draht-and Innenlochtrennen in der Halbleiterwafer-Herstellung. PhD Thesis, Universität Erlangen-Nürnberg (2002)

    Google Scholar 

  78. S. Porowski: High pressure growth of GaN — new prospects for blue lasers. J. Cryst. Growth 166, 583 (1996)

    Article  CAS  Google Scholar 

  79. R.K. Douglas, J.W. Kolis: Crystal growth of gallium nitride in supercritical ammonia. J. Cryst. Growth 222, 431 (2001)

    Article  Google Scholar 

  80. http://www.sei.co.jp/news_e/press/02/02_16.html

  81. Y. Oshima, T. Eri, M. Shibata, H. Sunakawa, K. Kobayashi, T. Ichihashi, A. Usui: Preparation of freestanding GaN wafers by hydride vapor phase epitaxy with void-assisted separation. Jpn. J. Appl. Phys. 42, L1 (2003)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jurisch, M., Jacob, H., Flade, T. (2004). Supplementing Silicon: the Compound Semiconductors. In: Siffert, P., Krimmel, E.F. (eds) Silicon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09897-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09897-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07356-4

  • Online ISBN: 978-3-662-09897-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics