Skip to main content
Log in

The Features of GaAs and GaP Semiconductor Cathodes in an Infrared Converter System

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The aim of this study is to examine the electrical and optical comparative analysis of semi-insulating GaAs and GaP photoconductive electrodes in an infrared converter system with a resistivity of >107 Ω cm for the same interelectrode distance d and gas pressure p experimentally and theoretically, when the discharge cell has been filled by argon. To provide the stability of the semiconductor electrode in Ar media, the experiments were carried out in Townsend and glow discharge regimes for various parameter sets of pressure, interelectrode gap and discharge voltage. When the discharge exceeds a critical voltage value, some N-shape CVCs, which stem from both semiconductors and Ar gas, have been observed. To compare the features of the GaAs and GaP cathodes, the COMSOL multiphysics programme is used under the Ar media. The mean electron energy, thermal velocity, surface charge density, space charge and initial electron densities, and electron mobilities have been calculated for both semiconductor materials. It has been found that the electron mobility μe, electron thermal velocity, surface charge density σ and mean electron energy of GaAs is higher than those of GaP; hence, GaAs has better opto-electronic features compared to GaP. In addition, the experiments on the optical explorations prove that GaAs exhibit better optical response in the infrared region. The explored transport characteristics of the semiconductor electrodes are of importance, and they have to be taken into account when studying plasma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abdollahi, M.M. Golzan, and K. Aghayar, J. Alloys Compd. 675, 86 (2016).

    Article  Google Scholar 

  2. M. Iwamoto, A. Williams, C.P. Fan, A.G. Metzger, L.E. Larson, and P.M. Asbeck, IEEE Trans. Microw. Theory Tech. 49, 2472 (2001).

    Article  Google Scholar 

  3. D.F. Kimball, J. Jinho, H. Chin, P. Draxler, S. Lanfranco, W. Nagy, K. Linthicum, L.E. Larson, and P.M. Asbeck, IEEE Trans. Microw. Theory Tech. 54, 3848 (2006).

    Article  Google Scholar 

  4. L.E. Hassan, V.W. Larson, D.F. Leung, P.M. Kimball, and A. Asbeck, IEEE Trans. Microw. Theory Tech. 60, 1321 (2012).

    Article  Google Scholar 

  5. C.Y. Tseng and C.T. Lee, Sol. Energy 89, 17 (2013).

    Article  Google Scholar 

  6. Online document: Arsenic and Gallium Arsenide are fundamental to Semiconductor (Microchip) Manufacturing (2007). http://hse-rohs.oeko.info/fileadmin/user_upload/Sub st_Arsenic/Arsenic_Gallium_Arsenide_in_Semiconductors_ ESIA.pdf. Accessed 14 Nov 2016.

  7. J. Vaclavík and D. Vapenka, EPJ Web Conf. 48, 00028 (2013).

    Article  Google Scholar 

  8. D. Kumar, R. Shastri, A.K. Yadav, and D. Kumar, Int. Adv. Res. J. Sci. Eng. Technol. 2, 102 (2015).

    Article  Google Scholar 

  9. S. Assali, I. Zardo, S. Plissard, D. Kriegner, M.A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J.E.M. Haverkort, and E.P.A.M. Bakkers, Nano Lett. 13, 1559 (2013).

    Article  Google Scholar 

  10. H. Wagner, T. Ohrdes, A.D. Shirazi, B.P. Veettil, D. König, and P.P. Altermatt, J. Appl. Phys. 115, 044508 (2014).

    Article  Google Scholar 

  11. S.S. Kasymov and L. G. Paritskii, Device for tracking images. Russian Authors’ Certificate 1798020/18-10 (1973)

  12. T. C. Lengnick, Discharge tube. US Patent 1936514 (1933)

  13. L.M. Portsel, Yu.A. Astrov, I. Reimann, E. Ammelt, and H.G. Purwins, J. Appl. Phys. 85, 3960 (1999).

    Article  Google Scholar 

  14. V.M. Marchenko, S. Matern, H.G. Purwins, Yu.A. Astrov, and L.M. Portsel, Proc. PIE198, 4948 (2003).

  15. L.M. Portsel, A.N. Lodygin, and Yu.A. Astrov, J. Phys. D Appl. Phys. 42, 235208 (2009).

    Article  Google Scholar 

  16. Yu.A. Astrov, A.N. Lodygin, and L.M. Portsel, J. Phys. D Appl. Phys. 49, 095202 (2016).

    Article  Google Scholar 

  17. H. Kurt, S. Cetin, and B.G. Salamov, IEEE Trans. Plasma 39, 1086 (2011).

    Article  Google Scholar 

  18. B.G. Salamov, N.N. Lebedeva, and H.Y. Kurt, J. Phys. D Appl. Phys. 39, 2732 (2006).

    Article  Google Scholar 

  19. B.G. Salamov and H.Y. Kurt, J. Phys. D Appl. Phys. 38, 682 (2005).

    Article  Google Scholar 

  20. H.Y. Kurt, E. Kurt, and B.G. Salamov, Imaging Sci. J. 49, 205 (2001).

    Article  Google Scholar 

  21. E.L. Gurevich, S. Kittel, R. Hergenroder, Yu.A. Astrov, L.M. Portsel, A.N. Lodygin, V.A. Tolmachev, and A.V. Ankudinov, J. Phys. D Appl. Phys. 43, 275302 (2010).

    Article  Google Scholar 

  22. A.N. Lodygin, Yu.A. Astrov, L.M. Portsel, and E.V. Beregulin, Tech. Phys. 60, 5 (2015).

    Article  Google Scholar 

  23. R. Wild, T. Schumann, and L. Stollenwerk, Plasma Sources Sci. Technol. 23, 054004 (2014).

    Article  Google Scholar 

  24. E. Monroy, F. Omnes, and F. Calle, Semicond. Sci. Technol. 18, R33 (2003).

    Article  Google Scholar 

  25. Z. Li, Growth and Characterization of ZnSe and ZnTe Alloy Nanowires. Thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Materials Science and Engineering University of Toronto (2011).

  26. H.E. Ruda and A. Shik, Physica E 6, 543 (2000).

    Article  Google Scholar 

  27. R.M. Sankaran, High-pressure microdischarges as microreactors for materials applications. Thesis in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, California Institute of Technology Pasadena, California 2004 (Defended May 27, 2004)

  28. R. Wild, T. Schumann, and L. Stollenwerk, Plasma Sources Sci. Technol. 23, 054004 (2014).

    Article  Google Scholar 

  29. Y. Sadiq, H.Y. Kurt, A.O. Albarzanji, S.D. Alekperov, and B.G. Salamov, Solid-State Electron. 53, 1009 (2009).

    Article  Google Scholar 

  30. H. Kurt, E. Koc, and B.G. Salamov, IEEE Trans. Plasma 38, 137 (2010).

    Article  Google Scholar 

  31. M.P. Shaw, V.V. Mitin, E. Scholl, and H.L. Grubin, The Physics of Instabilities in Solid State Electron Devices (New York: Lenum, 1992).

    Book  Google Scholar 

  32. C.Z. Fu, D. Yong, X.Q. Guan, and Z.T. Hui, J. Appl. Phys. 87, N3 (2000).

    Article  Google Scholar 

  33. F.J. Niedernostheide, Nonlinear Dynamics and Pattern Formation in Semiconductors and DEVICES (Berlin: Springer, 1995).

    Book  Google Scholar 

  34. H.Y. Kurt, Y. Sadıq, and B.G. Salamov, Phys. Status Solidi A 205, 321 (2008).

    Article  Google Scholar 

  35. H.Y. Kurt, A. Inalöz, and B.G. Salamov, Optoelectron. Adv. Mater. Rapid Commun. 4, 205 (2010).

    Google Scholar 

  36. E. Scholl, F.J. NiedernostheideParisi, W. Prettl, and H. Purwins, Evolution of Spontaneous Structures in Dissipative Continuous Systems, ed. F.H. Busse and S.C. Muller (Berlin: Springer, 1998), p. 446.

    Chapter  Google Scholar 

  37. B.J. Clerjaud, Phys. C 18, 3615 (1985).

    Article  Google Scholar 

  38. H.H. Kurt and E. Tanriverdi, J. Electron. Mater. 45, 3872 (2016).

    Article  Google Scholar 

  39. H.H. Kurt, E. Tanriverdi, and E. Kurt, J. Electron. Mater. 45, 3970 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by two Grants, namely BAP No. 05/2012-47and 05/2012-72, from the Gazi University-Scientific Research Project Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hilal Kurt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurt, H.H., Tanrıverdi, E. The Features of GaAs and GaP Semiconductor Cathodes in an Infrared Converter System. J. Electron. Mater. 46, 4024–4033 (2017). https://doi.org/10.1007/s11664-017-5539-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5539-0

Keywords

Navigation