Skip to main content
Log in

Post-Annealing Effects on Surface Morphological, Electrical and Optical Properties of Nanostructured Cr-Doped CdO Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanostructured Cr-doped CdO thin films were deposited on glass substrates by reactive direct current magnetron sputtering and post-annealed in vacuum from 200°C to 500°C. X-ray diffraction studies confirmed that the films exhibit cubic nature with preferential orientation along the (111) plane. The crystallite size, lattice parameters, unit cell volume and strain in the films were determined from x-ray diffraction analysis. The surface morphology of the films has been characterized by field emission scanning electron microscopy and atomic force microscopy. The electrical properties of the Cr-doped CdO thin films were measured by using a four-probe method and Hall effect system. The lowest electrical resistivity of 2.20 × 10−4 Ω cm and a maximum optical transmittance of 88% have been obtained for the thin films annealed at 500°C. The optical band gap of the films decreased from 2.77 eV to 2.65 eV with the increase of annealing temperature. The optical constants, packing density and porosity of Cr-doped CdO thin films were also evaluated from the transmittance spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Azizar Rahman and M.K.R. Khan, Mater. Sci. Semicond. Process. 24, 26 (2014).

    Article  Google Scholar 

  2. Z. Zhao, D.L. Morel, and C.S. Ferekides, Thin Solid Films 413, 203 (2002).

    Article  Google Scholar 

  3. T.K. Subramanyam, B. Srinivasulu Naidu, and S. Uthanna, Appl. Surf. Sci. 169–170, 529 (2001).

    Article  Google Scholar 

  4. B. Sahin, Y. Gulen, F. Bayansal, H.A. Cetinkara, and H.S. Guder, Superlattices Microstruct. 65, 56 (2014).

    Article  Google Scholar 

  5. A.A. Dakhel, Phys. Status Solidi (a) 205, 2704 (2008).

    Article  Google Scholar 

  6. R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, and P.K. Kahol, Curr. Appl. Phys. 9, 673 (2009).

    Article  Google Scholar 

  7. A.A. Dakhel, Thin Solid Films 518, 1712 (2010).

    Article  Google Scholar 

  8. R.D. Shannon, Acta Cryst. A 32, 751 (1976).

    Article  Google Scholar 

  9. C.H. Champness and C.H. Chan, Sol. Energy Mater. Sol. Cells 37, 75 (1995).

    Article  Google Scholar 

  10. F.P. Koffyberg, Phys. Rev. B 13, 4470 (1976).

    Article  Google Scholar 

  11. A.J. Varkey and A.F. Fort, Thin Solid Films 239, 211 (1994).

    Article  Google Scholar 

  12. R. Ferro, J.A. Rodriguez, O. Vigil, A. Morales-Acevedo, and G. Contreras-Puente, Phys. Status Solidi (a) 177, 477 (2000).

    Article  Google Scholar 

  13. M. Yan, M. Lane, C.R. Kannewurf, and R.P.H. Chang, Appl. Phys. Lett. 78, 2342 (2001).

    Article  Google Scholar 

  14. A.B.M.A. Ashrafi, H. Kumano, I. Suemune, Y.W. Ok, and T.Y. Seong, Appl. Phys. Lett. 79, 470 (2001).

    Article  Google Scholar 

  15. G. Phatak and R. Lal, Thin Solid Films 245, 17 (1994).

    Article  Google Scholar 

  16. I.M. Ocampo, A.M. Ferandez, and P.J. Sabastian, Semicond. Sci. Technol. 8, 750 (1993).

    Article  Google Scholar 

  17. M. Labeau, V. Reboux, D. Dhahri, and J.C. Joubert, Thin Solid Films 136, 257 (1986).

    Article  Google Scholar 

  18. B. Hymavathi, B. Rajesh Kumar, and T. Subba Rao, Procedia Mater. Sci. 6, 668 (2014).

    Article  Google Scholar 

  19. B. Hymavathi, B. Rajesh Kumar, and T. Subba Rao, Procedia Mater. Sci. 10, 285 (2015).

    Article  Google Scholar 

  20. B. Rajesh Kumar and T. Subba Rao, in AIP Conference Proceedings (2014), pp. 118–122

  21. T. Singh, D.K. Pandya, and R. Singh, Mater. Chem. Phys. 130, 1366 (2011).

    Article  Google Scholar 

  22. A. Abdolahzadeh Ziabari and F.E. Ghodsi, J. Mater. Sci. Mater. Electron. 23, 1628 (2012).

    Article  Google Scholar 

  23. A.A. Dakhel, Bull. Mater. Sci. 36, 819 (2013).

    Article  Google Scholar 

  24. T. Singh, D.K. Pandya, and R. Singh, Mater. Sci. Eng. B 176, 945 (2011).

    Article  Google Scholar 

  25. I. Akyuz, S. Kose, E. Ketenci, V. Bilgin, and F. Atay, J. Alloys Compd. 509, 1947 (2011).

    Article  Google Scholar 

  26. Z.B. Fang, Z.J. Yan, Y.S. Tan, X.Q. Liu, and Y.Y. Wang, Appl. Surf. Sci. 241, 303 (2005).

    Article  Google Scholar 

  27. A.N. Banerjee, S. Kundoo, and K.K. Chattopadhyay, Thin Solid Films 440, 5 (2003).

    Article  Google Scholar 

  28. F.A. Kronger and H.J. Vink, J. Chem. Phys. 22, 250 (1954).

    Article  Google Scholar 

  29. M.H. Suhail, I.M. Ibrahim, and G. Mohan Rao, J. Electron Devices 13, 965 (2012).

    Google Scholar 

  30. B. Rajesh Kumar and T. Subba Rao, Appl. Surf. Sci. 265, 169 (2013).

    Article  Google Scholar 

  31. M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglu, J. Mater. Sci. Mater. Electron. 19, 704 (2008).

    Article  Google Scholar 

  32. R.R. Salunkhe, D.S. Dhawale, T.P. Gujar, and C.D. Lokhande, Mater. Res. Bull. 44, 364 (2009).

    Article  Google Scholar 

  33. S. Aksoy, Y. Caglar, S. Ilican, and M. Caglar, Int. J. Hydrogen Energy 34, 5191 (2009).

    Article  Google Scholar 

  34. Y.-F. Kuo and T.-Y. Tseng, Mater. Chem. Phys. 61, 244 (1999).

    Article  Google Scholar 

  35. J. Lv, K. Huang, X. Chen, J. Zhu, C. Cao, X. Song, and Z. Sun, Opt. Commun. 284, 2905 (2011).

    Article  Google Scholar 

  36. W.L. Bragg and A.B. Pippard, Acta Crystallogr. 6, 865 (1953).

    Article  Google Scholar 

  37. H.A. Mcleod, J. Vac. Sci. Technol. A 4, 418 (1986).

    Article  Google Scholar 

  38. H.K. Pulker, Appl. Opt. 18, 1969 (1979).

    Article  Google Scholar 

  39. G.M. Hale and M.R. Querry, Appl. Opt. 12, 555 (1973).

    Article  Google Scholar 

  40. H. Koch, Phys. Status Solidi 12, 533 (1965).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hymavathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hymavathi, B., Rajesh Kumar, B. & Subba Rao, T. Post-Annealing Effects on Surface Morphological, Electrical and Optical Properties of Nanostructured Cr-Doped CdO Thin Films. J. Electron. Mater. 47, 503–511 (2018). https://doi.org/10.1007/s11664-017-5799-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5799-8

Keywords

Navigation