Skip to main content
Log in

Surface morphology and optoelectronic studies of sol–gel derived nanostructured CdO thin films: heat treatment effect

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Morphological dependence of the optoelectronic properties of sol–gel derived CdO thin films annealed at different temperatures in air has been studied. After preparing, the films were investigated by studying their structural, morphological, d.c. electrical and optical properties. X-ray diffraction results suggest that the samples are polycrystalline and the crystallinity of them enhanced with annealing temperature. The average grain size is in the range of 12–34 nm. The root mean square roughness of the films was increased from 3.09 to 6.43 nm with annealing temperature. It was observed that the electro-optical characteristics of the films were strongly affected by surface roughness. As morphology and structure changed due to heat treatment, the carrier concentration was varied from 1.13 × 1019 to 3.10 × 1019 cm−3 with annealing temperature and the mobility increased from less than 7 to 44.8 cm2 V−1 s−1. It was found that the transmittance and the band gap decreased as annealing temperature increased. The optical constants of the film were studied and the dispersion of the refractive index was discussed in terms of the Wemple–DiDomenico single oscillator model. The real and imaginary parts of the dielectric constant of the films were also determined. The volume energy loss increases more than the surface energy loss at their particular peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B. Saha, R. Thapa, K.K. Chattopadhyay, Solid State Commun. 145, 33 (2008)

    Article  CAS  Google Scholar 

  2. S. Aksoy, Y. Caglar, S. Ilican, M. Caglar, Int. J. Hydrogen Energ. 34, 5191 (2009)

    Article  CAS  Google Scholar 

  3. F. Cruz-Gandarilla, A. Morales-Acevedo, O. Vigil, M. Hesiquio-Garduño, L. Vaillant, G. Contreras-Puente, Mater. Chem. Phys. 78, 840 (2003)

    Google Scholar 

  4. R.A. Ismail, B.G. Rasheed, E.T. Salm, M. Al-Hadethy, J. Mater. Sci: Mater. Electron. 18, 1027 (2007)

    Article  CAS  Google Scholar 

  5. Q. Zhou, Z. Ji, B.B. Hu, C. Chen, L. Zhao, C. Wang, Mater. Lett. 61, 531 (2007)

    Article  CAS  Google Scholar 

  6. R.R. Salunkhe, D.S. Dhawale, T.P. Gujar, C.D. Lokhande, Mater. Res. Bull. 44, 364 (2009)

    Article  CAS  Google Scholar 

  7. E.G. Birgin, I. Chambouleyron, J.M. Martínez, J. Comput. Phys. 151, 862 (1999)

    Article  CAS  Google Scholar 

  8. T. Krishnakumar, R. Jayaprakash, T. Prakash, D. Sathyaraj, N. Donato, S. Licoccia, M. Latino, A. Stassi, G. Neri, Nanotechnology 22, 325501 (2011)

    Article  CAS  Google Scholar 

  9. B.D. Cullity, Elements of X-ray diffractions, 2nd edn. (Addison-Wesley, Reading, MA, 1978)

  10. A. Duparré, Light scattering of thin dielectric films (Handbook of Optical Properties. CRC Press, Boca Raton, 1995) pp. 273–304

  11. E.S. Gadelmawla, M.M. Koura, T.M. Maksoud, I.M. Elewa, H.H. Soliman, J. Mater. Process. Technol. 123, 133 (2002)

    Article  Google Scholar 

  12. M. Pelliccione, T.M. Lu, Evolution of thin film morphology: modeling and simulations (Springer, Berlin, 2008)

    Google Scholar 

  13. Z.B. Fang, Z.J. Yan, Y.S. Tan, X.Q. Liu, Y.Y. Wang, Appl. Surf. Sci. 241, 303 (2005)

    Article  CAS  Google Scholar 

  14. A. Ianculescu, M. Gartner, B. Despax, V. Bley, T. Leby, R. Gavrila, M. Modreanu, Appl. Surf. Sci. 253, 344 (1996)

    Article  Google Scholar 

  15. A. Abdolahzadeh Ziabari, F.E. Ghodsi, J. Alloys Compd. 509, 8748 (2011)

    Article  Google Scholar 

  16. F.A. Kroger, H.J. Vink, J. Chem. Phys. 22, 250 (1954)

    Article  CAS  Google Scholar 

  17. S. Major, A. Banerjee, K.L. Chopra, Thin Solid Films 122, 31 (1984)

    Article  CAS  Google Scholar 

  18. R. Ghosh, G.K. Paul, D. Basak, Mater. Res. Bull. 40, 1905 (2005)

    Article  CAS  Google Scholar 

  19. K.L. Chopra, R.C. Kainthla, D.K. Pandya, A.P. Thakoor, Phys. Thin Films 12, 167 (1982)

    CAS  Google Scholar 

  20. J.L. Vossen, Phys. Thin Films 9, 1 (1977)

    CAS  Google Scholar 

  21. J.S. An, S.C. Kim, S.H. Hahn, S.K. Ko, E.J. Kim, J. Korean Phys. Soc. 45, 1629 (2004)

    CAS  Google Scholar 

  22. G.T. Delgado, C.I.Z. Romero, S.A.M. Hernández, R.C. Pérez, O.Z. Angel, Sol. Energy Mater. Sol. Cells 93, 55 (2009)

    Article  Google Scholar 

  23. D.M.C. Galicia, R.C. Pérez, O.J. Sandoval, S.J. Sandoval, G.T. Delgado, C.I.Z. Romero, Thin Solid Films 371, 105 (2000)

    Article  Google Scholar 

  24. N. Kenny, C.R. Kannewurf, D.H. Whitmore, J. Phys. Chem. Solids 27, 1237 (1966)

    Article  CAS  Google Scholar 

  25. N.W. Ashcroft, N.D. Mermin, Solid state physics (Holt-Saunders International Editions, New York, 1976)

  26. I. Hamberg, C.G. Granqvist, K.F. Berggren, B.E. Sernelius, L. Engstrom, Phys. Rev. B30, 3240 (1984)

    Google Scholar 

  27. K.F. Berggren, E. Sernelius, Phys. Rev. B 24, 1971 (1981)

    Article  CAS  Google Scholar 

  28. J.F. Chang, H.L. Wang, M.H. Hon, J. Cryst. Growth 211, 93 (2000)

    Article  CAS  Google Scholar 

  29. M. Green, Z. Hussain, J. Appl. Phys. 69, 7788 (1991)

    Google Scholar 

  30. H. Sharma, S.N. Sharma, G. Singh, S.M. Shivaprasad, Physica E 31, 180 (2006)

    Article  CAS  Google Scholar 

  31. Al.L. Efros, A.L. Efros, Sov. Phys.-Semicond. 16, 772 (1982)

    Google Scholar 

  32. M. Mulato, I. Chambouleyron, E.G. Brigin, J.M. Martinez, Appl. Phys. Lett. 77, 2133 (2000)

    Google Scholar 

  33. A. Bendavid, P.J. Martin, L. Wieczorek, Thin Solid Films 354, 169 (1999)

    Article  CAS  Google Scholar 

  34. H. Czichos, T. Saito, L. Smith, Handbook of materials measurement methods (Springer, Leipzig, 2006)

    Book  Google Scholar 

  35. M. DiDomenico, S.H. Wemple, Phys. Rev. B 3, 1338 (1971)

    Article  Google Scholar 

  36. H. Lüth, Solid surfaces, interfaces and thin films, 4th edn. (Springer, Berlin, 2010)

    Book  Google Scholar 

  37. P. D. C. King, T. D. Veal, A. Schleife, J. Zúñiga-Pérez, B. Martel, P. H. Jefferson, F. Fuchs, V. Muñoz-Sanjosé, F. Bechstedt, C. F. McConville, Phys. Rev. B. 79, 205205 (2009)

    Google Scholar 

  38. J.I. Pankove, Optical processes in semiconductors (Dover Publications, Inc., New York, 1971)

    Google Scholar 

  39. M. Alaoui Lamrani, M. Addou, Z. Sofiani, B. Sahraoui, J. Ebothé, A. El Hichou, N. Fellahi, J.C. Bernède, R. Dounia, Opt. Commun. 277, 196 (2007)

    Article  Google Scholar 

  40. T. Wagner, M. Krbal, T. Kohoutek, V. Peina, Mir. Vlek, Mil. Vlek, M. Frumar, J. Non-Cryst. Solids 326, 233 (2003)

    Article  Google Scholar 

  41. K. Bahedi, M. Addou, M. El Jouad, Z. Sofiani, M. Alaoui Lamrani, T. El Habbani, N. Fellahi, S. Bayoud, L. Dghoughi, B. Sahraoui, Z. Essaïdi, Appl. Surf. Sci. 255, 4693 (2009)

    Article  CAS  Google Scholar 

  42. Z. Sofiani, B. Sahraoui, M. Addou, R. Adhiri, M. Alauoui Lamrani, L. Dghoughi, N. Fellahi, B. Derkowska, W. Bala, J. Appl. Phys. 101, 063104 (2007)

    Article  Google Scholar 

  43. R. Adair, L.L. Chase, S.A. Payne, Phys. Rev. B 39, 3337 (1989)

    Article  CAS  Google Scholar 

  44. V. Narayanan, R.K. Thareja, Opt. Commun. 260, 170 (2006)

    Article  CAS  Google Scholar 

  45. M.A. Flores-Mendoza, R. Castanedo-Perez, G. Torres-Delgado, S.A. Tomás, J.G. Mendoza-Alvarez, O. Zelaya-Angel, J. Lumin. 130, 2550 (2010)

    Article  Google Scholar 

  46. B.S. Zhou, V.V. Volkov, Z.L. Wang, Chem. Mater. 11, 3037 (1999)

    Article  Google Scholar 

  47. Z. Guo, M. Li, J. Liu, Nanotechnology 19, 245611 (2008). http://iopscience.iop.org/0957-4484/19/24/245611

  48. D. Ma, Z. Ye, L. Wang, J. Huang, B. Zhao, Mater. Lett. 58, 128 (2003)

    Article  Google Scholar 

  49. D.J. Seo, J. Korean Phys. Soc. 45, 1575 (2004)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. Ghodsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziabari, A.A., Ghodsi, F.E. Surface morphology and optoelectronic studies of sol–gel derived nanostructured CdO thin films: heat treatment effect. J Mater Sci: Mater Electron 23, 1628–1639 (2012). https://doi.org/10.1007/s10854-012-0640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0640-x

Keywords

Navigation