Skip to main content
Log in

Optical and EPR Spectroscopic Studies of Deep Red Light Emitting Fe-Doped LiAl5O8 Phosphor Prepared Via Propellant Combustion Route

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

LiAl5O8 doped with Fe was synthesized by a propellant combustion route at furnace temperature of 773 K. The phosphor was characterized using powder x-ray diffraction, optical absorption, electron paramagnetic resonance (EPR) and photoluminescence spectroscopic techniques. The optical absorption spectrum exhibits a broad band at 242 nm characteristic of charge transfer between Fe3+–O2−. On excitation with 293 nm, emission band for the Fe3+ ion was observed at 687 nm. The CIE (International Commission on Illumination or Commission Internationale de l’Elcairage) coordinates for the system were evaluated adopting standard procedure which suggested that the system can be effective as a deep red emitting phosphor. The EPR spectrum of this phosphor exhibits a number of resonance signals characteristic of Fe3+ ions. The resonance signals at g = 3.16, 2.27 are attributed to Fe3+ present at tetrahedral site with an axial symmetry. The resonance signals at g = 1.98 and 1.43 are attributed to Fe3+ ions in octahedral site with an axial symmetry. Various EPR parameters such as the number of spins, Gibbs free energy, magnetic susceptibility, Curie constant and effective magnetic moment values are calculated and compared at room temperature and 110 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Abritta, N.T. Melamed, J. MariaNeto, and F. Souza De Barros, J. Lumin. 18–19, 179 (1979).

    Article  Google Scholar 

  2. X. Li, G. Jiang, S. Zhou, X. Wei, Y. Chen, C. KuiDuan, and M. Yin, Sensor Actuat. B Chem. 202, 1065 (2014).

    Article  Google Scholar 

  3. V. Singh, R.P.S. Chakradhar, J.L. Rao, and D.-K. Kim, Mater. Chem. Phys. 110, 43 (2008).

    Article  Google Scholar 

  4. X. Yang, G. Ning, X. Li, and Y. Lin, Mater. Lett. 61, 4694 (2007).

    Article  Google Scholar 

  5. N. Suriyamurthy, B.S. Panigrahi, and A. Natarajan, Mat. Sci. Eng. A Struct.: A 403, 182 (2005).

    Article  Google Scholar 

  6. S. Hashimoto, K. Hattori, K. Inoue, A. Nakahashi, S. Honda, and Y. Iwamoto, Mater. Res. Bull. 44, 70 (2009).

    Article  Google Scholar 

  7. V. Singh and T.K. Gundu Rao, J. Solid State Chem. 181, 1387 (2008).

    Article  Google Scholar 

  8. J. Kai, Y. Xing-Hai, Y. Ming-Xin, H. Wei-Shi, and H. Jing-Gen, Chin. J. Lumin. 24, 517 (2003).

    Google Scholar 

  9. S.S. Pitale, V. Kumar, I.M. Nagpure, O.M. Ntwaeaborwa, E. Coetsee, and H.C. Swart, J. Appl. Phys. 109, 013105 (2011).

    Article  Google Scholar 

  10. Z. Mu, Y. Hu, L. Chen, X. Wang, and G. Ju, Radiat. Meas. 47, 426 (2012).

    Article  Google Scholar 

  11. V. Singh, V.K. Rai, I. Ledoux-Rak, and H.Y. Kwak, Appl. Phys. B 97, 103 (2009).

    Article  Google Scholar 

  12. C. Justin Raj, M.B. Lincoln, and S. Jerome Das, Cryst. Res. Technol. 43, 823 (2008).

    Article  Google Scholar 

  13. S.C. Bhargava, J. Phys. C: Solid State Phys. 19, 7045 (1986).

    Article  Google Scholar 

  14. M.M.C. Chou, C.C. Hsu, C.-Y. Lee, and C. Chen, Cryst. Growth Des. 10, 191 (2010).

    Article  Google Scholar 

  15. S.S. Pitale, V. Kumar, I. Nagpure, O.M. Ntwaeaborwa, and H.C. Swart, Curr. Appl. Phys. 11, 341 (2011).

    Article  Google Scholar 

  16. G.N. Nikhare, S.C. Gedam, and S.J. Dhoble, J. Lumin. 137, 290 (2013).

    Article  Google Scholar 

  17. V. Singh, R.P.S. Chakradhar, J.L. Rao, and H.-Y. Kwak, Solid State Sci. 11, 870 (2009).

    Article  Google Scholar 

  18. D. Pan, D. Yuan, H. Sun, X. Duan, C. Luan, S. Guo, Z. Li, and L. Wang, Mater. Chem. Phys. 96, 317 (2006).

    Article  Google Scholar 

  19. D. Deng, H. Ma, S. Xu, Q. Wang, L. Huang, S. Zhao, H. Wang, and C. Li, J. Non-Cryst. Solids. 357, 1426 (2011).

    Article  Google Scholar 

  20. X. Duan and D. Yuan, J. Non-Cryst. Solids. 351, 2348 (2005).

    Article  Google Scholar 

  21. M. Aoyama, Y. Amano, K. Inoue, S. Honda, S. Hashimoto, and Y. Iwamoto, J. Lumin. 135, 211 (2013).

    Article  Google Scholar 

  22. K.E. Fox, T. Furukawa, and W.B. White, J. Am. Ceram. Soc. 64, C42 (1981).

  23. D.T. Palumbo, J. Lumin. 4, 89 (1971).

    Article  Google Scholar 

  24. S.A. Brawer and W.B. White, J. Mater. Sci. 13, 907 (1978).

    Article  Google Scholar 

  25. W. Lu, X. Gong, M. Nan, Y. Liu, S. Shuang, and C. Dong, Anal. Chim. Acta 898, 116 (2015).

    Article  Google Scholar 

  26. E.L. Que, D.W. Domaille, and C.J. Chang, Chem. Rev. 108, 1517 (2008).

    Article  Google Scholar 

  27. M. Parker and H. Bothwick, Plant Physiol. 24, 345 (1949).

    Article  Google Scholar 

  28. V. Singh, R.P.S. Chakradhar, J.L. Rao, and J.-J. Zhu, Mater. Chem. Phys. 111, 143 (2008).

    Article  Google Scholar 

  29. V. Singh, T.K. Gundu Rao, and J.-J. Zhu, J. Lumin. 128, 583 (2008).

    Article  Google Scholar 

  30. V. Singh, T.K. Gundu Rao, and D.-K. Kim, Radiat. Meas. 43, 1198 (2008).

    Article  Google Scholar 

  31. T.R.N. Kutty and M. Nayak, J. Alloys Compds. 269, 75 (1998).

    Article  Google Scholar 

  32. W. Shu, R.F. Qiang, S. Xiao, X. Yang, and J.W. Ding, J. Alloys Compds. 509, 3886 (2011).

    Article  Google Scholar 

  33. N.T. Melamed, J. Lumin. 1–2, 348 (1970).

    Article  Google Scholar 

  34. V. Singh, G. Sivaramaiah, J.L. Rao, N. Singh, A.K. Srivastava, P.K. Singh, S.U. Pawar, H. Gao, and P. Mardina, J. Mater. Sci.: Mater. Electron. 27, 4494 (2016).

    Google Scholar 

  35. D. Jia, D. Hunter, and J. Wilhelm, ECS Trans. 19, 6 (2008).

    Google Scholar 

  36. A.P. Jadhav, A. Pawar, U. Pal, B.K. Kim, and Y.S. Kang, Sci. Adv. Mater. 4, 597 (2012).

    Article  Google Scholar 

  37. B. Bleany and K.W.H. Stevens, Rep. Prog. Phys. 16, 108 (1953).

    Article  Google Scholar 

  38. R.M. Golding, T. Singhasuwich, and W.C. Tennant, Mol. Phys. 34, 1343 (1977).

    Article  Google Scholar 

  39. Y. Pan, M. Mao, and J. Lin, Canad. Mineral. 47, 933 (2009).

    Article  Google Scholar 

  40. I. Ardelean, P. Pascuta, and L.V. Giurgiu, Int J. Mod. Phys B. 17, 3049 (2003).

    Article  Google Scholar 

  41. E. Burzo, I. Ardelean, and I. Ursu, J. Mater. Sci. 15, 581 (1980).

    Article  Google Scholar 

  42. G. Sivaramaiah, J. Lin, and Y. Pan, Phys. Chem. Miner. 38, 159 (2011).

    Article  Google Scholar 

  43. G. Sivaramaiah and Y. Pan, Phys. Chem. Miner. 39, 515 (2012).

    Article  Google Scholar 

  44. E. Boseman and D. Schoemaker, C. R. Acad. Sci. Paris 252, 1931 (1961).

  45. R. Kedzie, D. Lyons, and M. Kestigian, Phys. Rev. 138, A918 (1965).

    Article  Google Scholar 

  46. J.A. Weil and J.R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd ed. (New York: Wiley, 2007), p. 545.

    Google Scholar 

  47. A.J. Dekker, Solid State Physics (Groningen: Department of Electrical Engineering, University of Groningen, 2006).

    Google Scholar 

  48. C. Kittel, Introduction to Solid State Physics, 7th ed. (New York: Wiley, 1996).

    Google Scholar 

  49. M. Borgheresi, F. Di Benedetto, A. Caneschi, G. Pratesi, M. Romanelli, and L. Sorace, Phys. Chem. Miner. 34, 609 (2007).

    Article  Google Scholar 

  50. A.M. Hashem, H.M. Abuzeid, D. Mikhailova, H. Ehrenberg, A. Mauger, and C.M. Julien, J. Mater. Sci. 47, 2479 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Sivaramaiah, G., Rao, J.L. et al. Optical and EPR Spectroscopic Studies of Deep Red Light Emitting Fe-Doped LiAl5O8 Phosphor Prepared Via Propellant Combustion Route. J. Electron. Mater. 46, 1525–1531 (2017). https://doi.org/10.1007/s11664-016-5192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5192-z

Keywords

Navigation