Skip to main content

Advertisement

Log in

Thermodynamic and magnetic properties of surface Fe3+ species on quartz: effects of gamma-ray irradiation and implications for aerosol–radiation interactions

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Samples of a natural amethyst, pulverized in air, and irradiated for gamma-ray doses from 0.14 to 70 kGy, have been investigated by powder electron paramagnetic resonance (EPR) spectroscopy from 90 to 294 K. The powder EPR spectra show that the surface Fe3+ species on the gamma-ray-irradiated quartz differ from its counterpart without irradiation in both the effective g value and the observed line shape, suggesting marked radiation effects. This suggestion is supported by quantitatively determined thermodynamic properties, magnetic susceptibility, relaxation times, and geometrical radius. In particular, the surface Fe3+ species on gamma-ray-irradiated quartz has larger Gibbs and activation energies than its non-irradiated counterpart, suggesting radiation-induced chemical reactions. The shorter phase-memory time (T m) but longer spin–lattice relaxation time (T 1) of the surface Fe3+ species on the gamma-ray-irradiated quartz than that without irradiation indicate stronger dipolar interactions in the former. Moreover, the calculated geometrical radius of the surface Fe3+ species on the gamma-ray-irradiated quartz is three orders of magnitude larger than that of its counterpart on the as-is sample. These results provide new insights into radiation-induced aerosol nucleation, with relevance to atmospheric cloud formation and global climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andreae MO, Rosenfeld D (2008) Aerosol-cloud-precipitation interactions. Part 1: the nature and sources of cloud-active aerosols. Earth Sci Rev 89:13–41

    Article  Google Scholar 

  • Augustyniak-Jabłokow MA, Yablokov YV, Andrzejewski B, Kempiński W, Łoś Sz, Tadyszak K, Yablokov MY, Zhikharev VA (2010) EPR and magnetism of the nanostructured natural carbonaceous material shungite. Phys Chem Minerals 37:237–247

    Article  Google Scholar 

  • Balitsky VS, Machina IB, Marin AA, Shigley JE, Rossman GR, Lu T (2000) Industrial growth, morphology and some properties of bi-colored amethyst citrine quartz(ametrine). J Crystal Growth 212:255–260

    Article  Google Scholar 

  • Barry TI, Moore WJ (1964) Amethyst: Optical properties and paramagnetic resonance. Science 144:289–290

    Article  Google Scholar 

  • Buseck PR, Pósfai M (2010) Nature and climate effects of individual tropospheric aerosol particles. Annu Rev Earth Planet Sci 38:17–43

    Article  Google Scholar 

  • Claquin T, Schulz M, Balkanski YJ (1999) Modeling the mineralogy of atmospheric dust sources. J Geophys Res 104:243–256

    Article  Google Scholar 

  • Conklin MH, Hoffmann MR (1988) Metal ion-sulfur(IV) chemistry. 3. Thermodynamics and kinetics of transient iron(III)-sulfur(IV) complexes. Environ Sci Tech 22:899–907

    Article  Google Scholar 

  • Cox RT (1976) EPR of an S = 2 centre in amethyst quartz and its possible identification as the d4 ion Fe4+. J Phys C: Solid State Phys 9:3355–3361

    Article  Google Scholar 

  • Cressey G, Henderson CMB, van der Laan G (1993) Use of L-edge X-ray absorption spectroscopy to characterize multiple valence states of 3d transition metals; a new probe for mineralogical and geochemical research. Phys Chem Minerals 20:111–119

    Article  Google Scholar 

  • Dedushenko SK, Makhina IB, Marin AA, Mukhanov VA, Perfiliev YD (2004) What oxidation state of iron determines the amethyst colour? Hyperfine Interact 156:417–422

    Article  Google Scholar 

  • Di Benedetto F, Innocenti M, Tesi S, Romanelli M, D‘Acapito F, Fornaciai G, Montegrossi G, Pardi LA (2010) A Fe K-edge XAS study of amethyst. Phys Chem Minerals 37:283–289

    Google Scholar 

  • Dzuba SA, Puskin SG, Tsvetkov YN (1988) Application of EPR for investigation of atmospheric aerosols. Doklady AN USSR 299:1150

    Google Scholar 

  • Enghoff MB, Pedersen JOP, Bondo T, Johnson MS, Paling SM, Svensmark H (2008) Evidence for the role of ions in aerosol nucleation. J Phys Chem A112:10305–10309

    Google Scholar 

  • Enghoff MB, Pedersen JOP, Uggerhøj UI, Paling SM, Svensmark H (2011) Aerosol nucleation induced by a high energy particle beam. Geophys Res Lett 38:L09805

    Article  Google Scholar 

  • Gaite JM, Ermakoff P, Muller JP (1993) Characterization and origin of two Fe3+ EPR spectra in kaolinite. Phys Chem Minerals 20:242–247

    Article  Google Scholar 

  • Golding RM, Singhasuwich T, Tennant WC (1978) An analysis of conditions for an isotropic g-tensor in high-spin d5 systems. Mol Phys 34:1343–1350

    Article  Google Scholar 

  • Gubaidullin RR, Orlinskii SB, Rakhmatullin RM, Sen S (2007) Spectroscopic study of the effect of N and F codoping on the spatial distribution of Er3+ dopant ions in vitreous SiO2. J Appl Phys 101:063529

    Article  Google Scholar 

  • Halliburton LE, Hantehzadeh MR, Minge J, Mombourquette MJ, Weil JA (1989) EPR study of Fe3+ in alpha quartz: a reexamination of the lithium-compensated center. Phys Rev B40:2076–2081

    Google Scholar 

  • Hrouda F (1986) The effect of quartz on the magnetic anisotropy of quartzite. Studia Geophys Geodaet 30:39–45

    Article  Google Scholar 

  • Ledoux F, Zhilinskaya E, Bouhsina S, Courcot L, Bertho ML, Aboukaïs A, Puskaric E (2002) EPR investigations of Mn2+, Fe3+ ions and carbonaceous radicals in atmospheric particulate aerosols during their transport over the eastern coast of the English Channel. Atmo Environ 36:939–947

    Article  Google Scholar 

  • Ledoux F, Zhilinskaya E, Courcot L, Aboukaïs A, Puskaric E (2004) EPR investigation of iron in size segregated atmospheric aerosols collected at Dunnkerque, Northern France. Atmos Environ 38:1201–1210

    Article  Google Scholar 

  • Lohmann U, Feichter J (2005) Global indirect aerosol effects, a review. Atmos Chem Phys 5:715–737

    Article  Google Scholar 

  • Martin LR, Hill MW, Tai AF, Good TW (1991) The iron catalyzed oxidation of sulfur(IV) in aqueous solution: differing effects of organics at high and low pH. J Geophys Res 96:3085–3097

    Article  Google Scholar 

  • Matarrese LM, Weil JA, Peterson RL (1969) EPR spectrum of Fe3+ in synthetic brown quartz. J Chem Phys 50:2350–2360

    Article  Google Scholar 

  • Meyer BK, Lohse F, Spaeth JM, Weil JA (1984) Optically detected magnetic resonance of the [AlO4]0 centre in crystalline quartz. J Phys C: Solid State Phys 17:L31–L36

    Article  Google Scholar 

  • Ming J, Mombourquette MJ, Weil JA (1990) EPR study of Fe3+ in α- quartz: the sodium compensated center. Phys Rev B 42:33–36

    Article  Google Scholar 

  • Minge J, Weil JA, McGavin DG (1989) EPR study of Fe3+ in α-quartz: characterization of a new type of cation-compensated center. Phys Rev B 40:6490–6498

    Article  Google Scholar 

  • Mombourquette MJ, Tennant WC, Weil JA (1986) EPR study of Fe3+ in α-quartz: a reexamination of the so-called I center. J Chem Phys 86:68–79

    Article  Google Scholar 

  • Pan Y, Mao M, Lin J (2009) Single-crystal EPR study of Fe3+ and VO2+ in prehnite from the Jeffrey mine, Asbestos, Quebec. Canad Mineral 47:933–945

    Article  Google Scholar 

  • Petrakovskii GA, Piskorskii VP, Sosnin VM, Kosobudskii ID (1983) Electron spin resonance of superparamagnetic transition metal particles in polymer matrices. Soviet Phys Solid State 25:1876–1879

    Google Scholar 

  • Saathoff H, Moehler O, Schurath U, Kamm S, Dippel B, Mihelcic D (2003) The AIDA soot aerosol characterization campaign 1999. J Aerosol Sci 34:1277–1296

    Article  Google Scholar 

  • SivaRamaiah G, Lakshmana Rao J (2012) Thermal and magnetic properties of VO2+ and Cr3+ centers in alkali lead borotellurite glasses. Proc Indian Nat Sci Acad 78:1–7

    Google Scholar 

  • SivaRamaiah G, Lin J, Pan Y (2011) Electron paramagnetic resonance spectroscopy of Fe3+ ions in amethyst: thermodynamic potentials and magnetic susceptibility. Phys Chem Minerals 38:159–167

    Article  Google Scholar 

  • Sreekanth Chakradhar RP, Sivaramaiah G, Lakshmana Rao J, Gopal NO (2005) Fe3+ ions in alkali lead tetraborate glasses—an electron paramagnetic resonance and optical study. Spectrochim Acta, Part A 62:51–57

    Article  Google Scholar 

  • Svensmark H, Pedersen JOP, Marsh ND, Enghoff MB, Uggerhøj UL (2007) Experimental evidence for the role of ions in particle nucleation under atmospheric conditions. Proc Roy Soc A 463:385–396

    Article  Google Scholar 

  • Tang IN (1996) Chemical and size effects of hygroscopic aerosols on light scattering coefficients. J Geophys Res 101:19245–19250

    Article  Google Scholar 

  • Tatarov B, Sugimoto N (2005) Estimation of quartz concentrations in the tropospheric mineral aerosols using combined Raman and high-spectral-resolution lidars. Optics Lett 30:3407–3409

    Article  Google Scholar 

  • To J, Sokol AA, French SA, Kaltsoyannis N, Catlow CRA (2005) Hole localization in [AlO4]0 defects in silica materials. J Chem Phys 122:144704

    Article  Google Scholar 

  • Walsby CJ, Lees NS, Claridge RFC, Weil JA (2003) The magnetic properties of oxygen-hole aluminum centres in crystalline SiO2. VI: A Stable AlO4/Li centre. Can J Phys 81:583–598

    Article  Google Scholar 

  • Weil JA (1994) EPR of iron centres in silicon dioxide. Appl Magn Reson 6:1–16

    Article  Google Scholar 

  • Weil JA, Bolton JR (2007) Electron paramagnetic resonance: elementary theory and practical applications. Wiley, New York

    Google Scholar 

  • Xie ZQ, Blum JD, Utsunomiya S, Ewing RC, Wang XM, Sun LG (2007) Summertime carbonaceous aerosols collected in the marine boundary layer of the Arctic Ocean. J Geophys Res 112:D02306

    Article  Google Scholar 

  • Yamanaka C, Kohno H, Ikeya M (1996) Pulsed ESR measurements of oxygen deficient type centers in various quartz. Appl Radiat Isot 47:1573–1577

    Article  Google Scholar 

  • Yamanaka C, Matsuda T, Ikeya M (2005) Electron spin resonance of particulate soot samples from automobiles to help environmental studies. Appl Radiat Isot 62:307–311

    Article  Google Scholar 

  • Yordanov ND, Najdenova I (2004) Selective estimation of soot in home dust by EPR spectrometry, Spectrochim. Acta A Mol Biomol Spectr 60:1367–1370

    Article  Google Scholar 

  • Yordanov ND, Veleva B, Christov R (1996) EPR study of aerosols with carbonaceous products in the urban air. Appl Magn Reson 10:439–445

    Article  Google Scholar 

  • Yu SC, Zhang Y (2011) An examination of the effects of aerosol chemical composition and size on radiative properties of multi-component aerosols. Atmo Climate Sci 1:19–32

    Article  Google Scholar 

  • Zhang SJ, Wang XC, Sammynaiken R, Tse JS, Yang LX, Li Z, Liu QQ, Desgreniers S, Yao Y, Liu HZ, Jin CQ (2009) Effect of pressure on the iron arsenide super conductor LixFeAs (x = 0.8, 1.0, 1.1) Phys Rev B 80:014506

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Milan Rieder for his suggestion of the experiments reported in Fig. 1, which was the impetus to this study. We also thank Dr. F. Di Benedetto and an anonymous reviewer for incisive criticisms and helpful suggestions, Drs. Kuppala V Narasimhulu and J. Lakshmana Rao for discussions, and the Natural Science and Engineering Research Council (NSERC) of Canada for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanming Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SivaRamaiah, G., Pan, Y. Thermodynamic and magnetic properties of surface Fe3+ species on quartz: effects of gamma-ray irradiation and implications for aerosol–radiation interactions. Phys Chem Minerals 39, 515–523 (2012). https://doi.org/10.1007/s00269-012-0507-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-012-0507-y

Keywords

Navigation