Skip to main content
Log in

Effect of Different Electrode Materials on the Electropolymerization Process of Aniline in Nitric Acid Media

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electropolymerization process of aniline on different electrode surfaces such as Pt, Au, RuTi and polyaniline film in nitric acid solution containing 1 M aniline was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Proposed electrical equivalent circuits were used to give a further analysis. Results show that the electrode materials accelerate the aniline electropolymerization remarkably as a catalyst, especially the electrochemical oxidation process of monomer aniline to its cation radical, which is the key step to incur the electropolymerization reaction of aniline on the electrode surface. The polymerization of aniline on RuTi electrode has the lowest reaction resistance for its adsorption sites, and the catalytic effects of these different electrodes decrease in the order: RuTi > polyaniline film > Pt > Au. The results also show that several states of polyaniline films are formed during the potential linear scan process in nitric acid solution and the corresponding oxidation and reduction reaction are reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.S. Choi, D.S. Suh, G.T. Kim, D.C. Kim, and Y.W. Park, Synth. Met. 101, 375 (1999).

    Article  Google Scholar 

  2. M. Ghosh, A. Barman, A. Das, A.K. Meikap, S.K. De, and S. Chatterjee, J. Appl. Phys. 83, 4230 (1998).

    Article  Google Scholar 

  3. N.T. Kemp, A.B. Kaiser, C.J. Liu, B. Chapman, O. Mercier, A.M. Carr, H.J. Trodahl, R.G. Buckley, A.C. Partridge, J.Y. Lee, C.Y. Kim, A. Bartl, L. Dunsch, W.T. Smith, and J.S. Shapiro, J. Polym. Sci., Part B: Polym. Phys. 37, 953 (1999).

    Article  Google Scholar 

  4. N. Mateeva, H. Niculescu, J. Schlenoff, and L.R. Testardi, J. Appl. Phys. 83, 3111 (1998).

    Article  Google Scholar 

  5. H. Wang, L. Yin, X. Pu, and C. Yu, Polymer 54, 1136 (2013).

    Article  Google Scholar 

  6. J. Jin, Q. Wang, and M.A. Haque, J. Phys. D Appl. Phys. 43, 205302 (2010).

    Article  Google Scholar 

  7. J. Li, X. Tang, H. Li, Y. Yan, and Q. Zhang, Synth. Met. 160, 1153 (2010).

    Article  Google Scholar 

  8. Y. Sun, Z. Wei, W. Xu, and D. Zhu, Synth. Met. 160, 2371 (2010).

    Article  Google Scholar 

  9. T. Park, C. Park, B. Kim, H. Shin, and E. Kim, Energy Environ. Sci. 6, 788 (2013).

    Article  Google Scholar 

  10. T. Stöcker, A. Köhler, and R. Moos, J. Polym. Sci., Part B: Polym. Phys. 50, 976 (2012).

    Article  Google Scholar 

  11. R. Yue and J. Xu, Synth. Met. 162, 912 (2012).

    Article  Google Scholar 

  12. S. Neves and C.P. Fonseca, J. Power Sources 107, 13 (2002).

    Article  Google Scholar 

  13. B.A. Abd-El-Nabey, O.A. Abdullatef, G.A. El-Naggar, E.A. Matter, and R.M. Salman, Int. J. Electrochem. Sci. 11, 2721 (2016).

    Article  Google Scholar 

  14. S. Lakard, J. Husson, S. Monney, C.C. Buron, and B. Lakard, Prog. Org. Coat. 99, 429 (2016).

    Article  Google Scholar 

  15. A.G. MacDiarmid, L.S. Yang, W.S. Huang, and B.D. Humphrey, Synth. Met. 18, 393 (1987).

    Article  Google Scholar 

  16. T. Kessler and A.M. Castro, Luna. J. Solid State Electrochem. 7, 593 (2003).

    Article  Google Scholar 

  17. S.K. Dhawan, D. Kumar, M.K. Ram, S. Chandra, and D.C. Trivedi, Sensors Actuators B 40, 99 (1997).

    Article  Google Scholar 

  18. Y. Qiao, C.M. Li, S. Bao, and Q. Bao, J. Power Sources 170, 79 (2007).

    Article  Google Scholar 

  19. D. Belanger, X. Ren, J. Davey, F. Uribe, and S. Gottesfeld, J. Electrochem. Soc. 147, 2923 (2000).

    Article  Google Scholar 

  20. G. Bereket, E. Hür, and Y. Şahi, Prog. Org. Coat. 54, 63 (2005).

    Article  Google Scholar 

  21. E.A. Gizzie, J.S. Niezgoda, M.T. Robinson, A.G. Harris, G.K. Jennings, S.J. Rosenthala, and D.E. Cliffel, Energy Environ. Sci. 8, 3572 (2015).

    Article  Google Scholar 

  22. W.W. Focke, G.E. Wnek, and Y. Wei, J. Phys. Chem. 91, 5813 (1987).

    Article  Google Scholar 

  23. Z.M. Tahir, E.C. Alocilja, and D.L. Grooms, Biosens. Bioelectron. 20, 1690 (2005).

    Article  Google Scholar 

  24. A.G. Macdiarmid, J.C. Chiang, and A.F. Richter, Synth. Met. 18, 285 (1987).

    Article  Google Scholar 

  25. D.W. Hatchett, M. Josowicz, and J. Janata, J. Phys. Chem. B 103, 10992 (1999).

    Article  Google Scholar 

  26. J.-L. Camalet, J.-C. Lacroix, T.D. Nguyen, S. Aeiyach, M.C. Pham, J. Petitjean, and P.-C. Lacaze, J. Electroanal. Chem. 485, 13 (2000).

    Article  Google Scholar 

  27. S.-J. Choi and S.-M. Park, Adv. Mater. 12, 1547 (2000).

    Article  Google Scholar 

  28. S. Chen, C. Wu, and S. Yau, J. Electroanal. Chem. 729, 121 (2014).

    Article  Google Scholar 

  29. H. Minjia, T. Chao, Z. Qunfang, and J. Guibin, J. Chromatogr. A 1048, 257 (2004).

    Article  Google Scholar 

  30. Q. Qin, J. Tao, and Y. Yang, Synth. Met. 160, 1167 (2010).

    Article  Google Scholar 

  31. A.T. Özyılmaz, T. Tüken, B. Yazıcı, and M. Erbil, Prog. Org. Coat. 52, 92 (2005).

    Article  Google Scholar 

  32. T. To and P.A. Kilmartin, Int. J. Nanotechnol. 11, 451 (2014).

    Article  Google Scholar 

  33. S. Xiong, Q. Wang, and H. Xia, Mater. Res. Bull. 39, 1569 (2004).

    Article  Google Scholar 

  34. J.-C. Lacroix, J.-L. Camalet, S. Aeiyach, K.I. Chane-Ching, J. Petitjean, E. Chauveau, and P.-C. Lacaze, J. Electroanal. Chem. 481, 76 (2000).

    Article  Google Scholar 

  35. C.M.A. Brett, A.-M.C.F. Oliveira Brett, J.L.C. Pereira, and C. Rebelo, J. Appl. Electrochem. 23, 332 (1993).

    Article  Google Scholar 

  36. S.H. Mujawar, S.B. Ambade, T. Battumur, R.B. Ambade, and S.-H. Lee, Electrochim. Acta 56, 4462 (2011).

    Article  Google Scholar 

  37. L. Zhang, J. Zhang, and C. Zhang, Biosens. Bioelectron. 24, 2085 (2009).

    Article  Google Scholar 

  38. L. Zhang, C. Zhang, and J. Lian, Biosens. Bioelectron. 24, 690 (2008).

    Article  Google Scholar 

  39. H.K. Hassan, N.F. Atta, and A. Galal, Int. J. Electrochem. 7, 11161 (2012).

    Google Scholar 

  40. Y. Wang, J. Zhang, H. Ma, Z. Shen, M. Yang, X. Liu, and W. Wang, J. Electron. Mater. 44, 1777 (2014).

    Article  Google Scholar 

  41. Y. Wang, J. Zhang, Z. Shen, M. Yang, X. Liu, and W. Wang, J. Electron. Mater. 44, 2166 (2015).

    Article  Google Scholar 

  42. C. Boulanger, J. Electron. Mater. 39, 1818 (2010).

    Article  Google Scholar 

  43. H. Yang and A.J. Bard, J. Electroanal. Chem. 339, 423 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

The researchers are supported by Major Project of Chinese National Program for Fundamental Research and Development(973) (No. 2013CB632500) and Chinese Natural Science Foundation (No. 21276181). We are grateful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yi, Y., Yang, W. et al. Effect of Different Electrode Materials on the Electropolymerization Process of Aniline in Nitric Acid Media. J. Electron. Mater. 46, 1324–1330 (2017). https://doi.org/10.1007/s11664-016-5108-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5108-y

Keywords

Navigation