Skip to main content
Log in

Voltammetric and chronoamperometric studies of aniline electropolymerization in different aqueous sulfuric acid solutions

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The cyclic potential sweep method was applied to aniline electropolymerization on stainless steel electrode in three different concentrations of aqueous sulfuric acid solutions (0.5 M H2SO4, 1 M H2SO4 and 2 M H2SO4). The electrodeposited films of polyaniline were investigated and characterized using a simple cyclic voltammetry method to obtain information about the electrochemical properties of the deposited films. The polymerization of aniline on stainless steel via cyclic potential sweep method appears to be high in performance for protection of metal anodic in corrosive aqueous media. Also it was found that the corrosive tendency increases with increasing the concentration of the acid and decreases with increasing the cycle number. Chronoamperometry method was used to investigate the electrochemical properties of the electrodeposited film of polyaniline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Skotheim TA (ed) (1986) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  2. Linford RG (ed) (1987) Electrochemical science and technology of polymers. Elsevier Applied Science, London

    Google Scholar 

  3. DeBerry DW (1985) Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating. J Electrochem Soc 132:1022–1026

    Article  CAS  Google Scholar 

  4. Mengoli G, Munari MT, Bianco P, Musiani MM (1981) Anodic synthesis of polyaniline coatings onto Fe sheets. J Appl Polym Sci 26:4247–4257

    Article  CAS  Google Scholar 

  5. DeBerry DW (1985) Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating. J Electrochem Soc 132:1022–1026

    Article  CAS  Google Scholar 

  6. Marcel C, Tarascon JM (2001) An all-plastic WO3·H2O/polyaniline electrochromic device. Solid State Ionics 143:89–101

    Article  CAS  Google Scholar 

  7. Lu JX, Moon KS, Wong CP (2007) High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications. Polymer 48:1510–1515

    Article  CAS  Google Scholar 

  8. Mondal S, Rana U, Malik S (2015) Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem Commun 51:12365–12368

    Article  CAS  Google Scholar 

  9. Zhang K, Zhang LL, Zhao X, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22:1392–1401

    Article  CAS  Google Scholar 

  10. Abdelfetteh S, Farid H, Ahmed B, Belkacem N, Yvan B, Denis T, Mohamed El J (2018) Electrochemical synthesis of polyaniline–exfoliated grapheme composite films and their capacitance properties. J Electroanal Chem 818:26–34

    Article  CAS  Google Scholar 

  11. Benyoucef A, Huerta F, Vázquez JL, Morallon E (2005) Synthesis and in situ FTIRS characterization of conducting polymers obtained from aminobenzoic acid isomers at platinum electrodes. Eur Polym J 41:843–852

    Article  CAS  Google Scholar 

  12. Ying W, Jixiao W, Bin Ou, Song ZW, Shichang W (2010) Electrochemical polymerization and in situ FTIRS study of conducting polymers obtained from o-aminobenzoic with aniline at platinum electrodes. Synth Met 160:1591–1597

    Article  CAS  Google Scholar 

  13. Li D, Huang JX, Richard BK (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145

    Article  CAS  PubMed  Google Scholar 

  14. Zhou CQ, Han J, Guo R (2009) Synthesis of polyaniline hierarchical structures in a dilute SDS/HCl solution: nanostructure-covered rectangular tubes. Macromolecules 42:1252–1257

    Article  CAS  Google Scholar 

  15. Zhang ZM, Wei ZX, Wan MX (2002) Nanostructures of polyaniline doped with inorganic. Macromolecules 35:5937–5942

    Article  CAS  Google Scholar 

  16. Zhou CQ, Han J, Guo R (2009) Synthesis of Polyaniline Hierarchical Structures in a dilute SDS/HCl solution: nanostructure-covered rectangular tubes. Macromolecules 42:1252–1257

    Article  CAS  Google Scholar 

  17. Tallman DE, Pae Y, Bierwagen GP (1999) Conducting polymers and corrosion: polyaniline on steel. Corrosion 55:779–786

    Article  CAS  Google Scholar 

  18. Cook A, Gabriel A, Laycock N (2004) On the mechanism of corrosion protection of mild steel with polyaniline. J Electrochem Soc 151:B529

    Article  CAS  Google Scholar 

  19. Patil RC, Patil SP, Mulla IS, Vijayamohanan K (2000) Effect of protonation media on chemically and electrochemically synthesized polyaniline. Polym Int 49:189–196

    Article  CAS  Google Scholar 

  20. Hermas A, Nakayama M, Ogura K (2005) Enrichment of chromium-content in passive layers on stainless steel coated with polyaniline. Electrochim Acta 50:2001–2007

    Article  CAS  Google Scholar 

  21. Fahlman M, Jasty S, Epstein AJ (1997) Corrosion protection of iron/steel by emeraldine base polyaniline: an X-ray photoelectron spectroscopy study. Synth Met 85:1323–1326

    Article  CAS  Google Scholar 

  22. Huang WS, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans 1(82):2385–2400

    Article  Google Scholar 

  23. McCullough RD, Lowe RD, Jayaraman M, Anderson DL (1993) Design, synthesis, and control of conducting polymer architectures: structurally homogeneous poly(3-alkylthiophenes). J Org Chem 58:904–912

    Article  CAS  Google Scholar 

  24. Jeyaprabha C, Sathiyanarayanan S, Genkatachiari GV (2005) Co-adsorption effect of polyaniline and halide ions on the corrosion of iron in 0.5 M H2SO4 solutions. J Electroanal Chem 583:232–240

    Article  CAS  Google Scholar 

  25. Jeyaprabha C, Sathiyanarayanan S, Venkatachiari G (2005) Investigation of the inhibitive effect of poly(diphenylamine) on corrosion of iron in 0.5 M H2SO4 solutions. J Electroanal Chem 585:250–255

    Article  CAS  Google Scholar 

  26. Wessling B (1994) Passivation of metals by coating with polyaniline: corrosion potential shift and morphological changes. Adv Mater 6:226–228

    Article  CAS  Google Scholar 

  27. Bernard MC, Hugot-Le Goff A, Joiret S, Dinh NN, Loan NN (1999) Polyaniline layer for iron protection in sulfate medium. J Electrochem Soc 146:995–998

    Article  CAS  Google Scholar 

  28. Talo A, Passiniemi P, Forsen O, Ylasaari S (1997) Polyaniline/epoxy coatings with good anti-corrosion properties. Synth Met 85:1333–1334

    Article  CAS  Google Scholar 

  29. Racicot R, Brown R, Yang SC (1997) Corrosion protection of aluminum alloys by double-strand polyaniline. Synth Met 85:1263–1264

    Article  CAS  Google Scholar 

  30. Laroix JC, Camalet JL (2000) Aniline electropolymerization on mild steel and zinc in a two-step process. J Electroanal Chem 481:76–81

    Article  Google Scholar 

  31. Kaltenbrunner M et al (2013) An ultra-light weight design for imperceptible plastic electronics. Nature 499:458–463

    Article  CAS  PubMed  Google Scholar 

  32. Kim DH et al (2011) Epidermal electronics. Science 333:838–843

    Article  CAS  PubMed  Google Scholar 

  33. Salvatore GA et al (2014) Wafer-scale design of light weight and transparent electronics that wraps around hairs. Nat Commun 5:2982

    Article  CAS  PubMed  Google Scholar 

  34. Fukuda K et al (2014) Fully solution-processed flexible organic thin film transistor arrays with high mobility and exceptional uniformity. Sci Rep 4:3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takeda et al (2013) Integrated circuits using fully solution-processed organic TFT devices with printed silver electrodes. Org Electron 14:3362–3370

    Article  CAS  Google Scholar 

  36. Lee S-K et al (2011) Stretchable graphene transistors with printed dielectrics and ate electrodes. Nano Lett 11:4642–4646

    Article  CAS  PubMed  Google Scholar 

  37. Gutic S, Cacan M, Korac F (2017) Electrodeposition of polyaniline films on stainless steel and their voltammetric behavior in corrosive environments. Bull Chem Technol Bosn Herz 48:45–50

    CAS  Google Scholar 

  38. Gasparac R, Martin CR (2001) Investigations of the mechanism of corrosion inhibition by polyaniline. Polyaniline-coated stainless steel in sulfuric acid solution. J Electrochem Soc 148:B138

    Article  CAS  Google Scholar 

  39. Alam J, Riaz U, Ahmad S (2008) Development of nanostructured polyaniline dispersed smart anticorrosive composite coatings. Polym Adv Technol 19:882–888

    Article  CAS  Google Scholar 

  40. Kilmartin PA, Trier L, Wright GA (2002) Corrosion inhibition of polyaniline and poly(o-methoxyaniline) on stainless steels. Synth Met 131:99–109

    Article  CAS  Google Scholar 

  41. Dominis AJ (2001) Investigation of polyaniline emeraldine salts for the protection of plain carbon steel. Ph.D thesis

  42. Goto M, Ishii D (1975) Semidifferential electroanalysis. J Electroanal Chem 61:361–372

    Article  CAS  Google Scholar 

  43. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, pp 156–164

    Google Scholar 

  44. Ghoneim MM, El-Hallag IS (2010) Convolutive cyclic voltammetry, chronoamperometry and chronopotentiometry studies of C6Me6-isocloso-ruthenaborane complex in non-aqueous medium at a glassy carbon electrode. Chin J Chem 28:1849–1856

    Article  CAS  Google Scholar 

  45. Kulesza PJ, Malik KMA, Bala H (2001) Application of electroactive materials composed of conducting polymers and polynuclear inorganic compounds. J New Mat Electrochem Syst 4:167–172

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Al-Owais.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Owais, A.A., El-Hallag, I.S. Voltammetric and chronoamperometric studies of aniline electropolymerization in different aqueous sulfuric acid solutions. Polym. Bull. 76, 4571–4584 (2019). https://doi.org/10.1007/s00289-018-2610-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2610-9

Keywords

Navigation