Skip to main content
Log in

Hydrogen evolution on Pt and polyaniline modified Pt electrodes—a comparative electrochemical impedance spectroscopy study

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Kinetic of hydrogen evolution reaction, HER, at Pt and polyaniline, PANI, polymer film modified Pt electrodes in the sulphuric acid solution was investigated within the context of possible inhibition of HER by conducting polymers. Pt/PANI electrodes were prepared by electro-polymerization procedure with different quantities of PANI and electrochemically aged in the insulating state prior polarization and electrochemical impedance spectroscopy experiments. Polarization and impedance data obtained in the hydrogen (0.30 to 0.05 VRHE) and HER (0.00 to −0.155 VRHE) potential regions of bare Pt-poly electrode were compared with those of Pt/PANI electrodes. Significant differences of impedance spectra in the hydrogen region of potentials pointed toward domination of hydrogen under-potential deposition, H UPD, at Pt-poly surface and domination of PANI impedance at Pt/PANI electrodes, respectively. Quite similar impedance spectra obtained in the HER region of potentials and Tafel slopes of about 30 mV decade−1 evaluated from polarization measurements indicated that HER is proceeding by the same mechanism at Pt-poly and Pt/PANI electrodes, respectively. Analysis of respective impedance parameters showed that HER which is easily driven at Pt-poly electrode becomes inhibited to a certain extent at both Pt/PANI electrodes, but more for the one with higher quantity of PANI. These results can commonly be interpreted by HER that is taking place on the Pt substrate underlying more or less porous PANI film acting as a barrier toward electrolyte solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Inzelt G (2008) Conducting polymers—a new era in electrochemistry. In: Scholz F (ed) Monographs in electrochemistry. Springer-Verlag, Berlin

    Google Scholar 

  2. Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA (2000) Electron and proton conducting polymers: recent developments and prospects. Electrochim Acta 45:2403–2421

    Article  CAS  Google Scholar 

  3. Bhadra S, Khastgir D, Singha NK, Hee Lee J (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810

    Article  CAS  Google Scholar 

  4. Boeva ZA, Sergeyev VG (2014) Polyaniline: synthesis, properties and application. Polym Sci C 56:144–153

    CAS  Google Scholar 

  5. Nicolas-Debarnot D, Poncin-Epaillard F (2003) Polyaniline as a new sensitive layer for gas sensors. Anal Chim Acta 475:1–15

    Article  CAS  Google Scholar 

  6. Fusalba F, Gouérec P, Villers D, Bélanger D (2001) Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J Electrochem Soc 148:A1–A6

    Article  CAS  Google Scholar 

  7. Karam H, Mousavi MF, Shamsipur M (2003) A new design for dry polyaniline rechargeable batteries. J Power Sources 117:255–259

    Article  Google Scholar 

  8. Yan H, Tomizawa K, Ohno H, Toshima N (2003) All-solid actuator consisting of polyaniline film and solid polymer electrolyte. Macromol Mater Eng 288:578–584

    Article  CAS  Google Scholar 

  9. Mandić Z, Kraljić Roković M, Pokupčić T (2009) Polyaniline as cathodic material for electrochemical energy sources. The role of morphology. Electrochim Acta 54:2941–2950

    Article  Google Scholar 

  10. Song E, Choi JW (2013) Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3:498–523

    Article  CAS  Google Scholar 

  11. Srinivasan SS, Ratnadurai R, Niemann MU, Phani AR, Goswami DY (2010) Reversible hydrogen storage in electrospun polyaniline fibers. Int J Hydrog Energy 35:225–230

    Article  CAS  Google Scholar 

  12. Kraljić M, Mandić Z, Duić L (2003) Inhibition of steel corrosion by polyaniline coatings. Corros Sci 45:181–198

    Article  Google Scholar 

  13. Ahmad N, MacDiarmid AG (1996) Inhibition of corrosion of steels with exploitation of conducting polymers. Synth Met 78:103–110

    Article  CAS  Google Scholar 

  14. Brusić V, Angelopoulos M, Graham T (1997) Use of polyaniline and its derivatives in corrosion protection of copper and silver. J Electrochem Soc 144:436–442

    Article  Google Scholar 

  15. Holness RJ, Williams G, Worsley DA, McMurray HN (2005) Polyaniline inhibition of corrosion-driven organic coating cathodic delamination on iron. J Electrochem Soc 152:B73–B81

    Article  CAS  Google Scholar 

  16. Xing C, Zhang Z, Yu L, Zhang L, Bowmaker GA (2014) Electrochemical corrosion behaviour of carbon steel coated by polyaniline copolymers micro/nanostructures. RSC Adv 4:32718–32725

    Article  CAS  Google Scholar 

  17. Lee JY, Tan TC (1990) Cyclic voltammetry of electrodeposition of metal on electrosynthesized polypyrrole film. J Electrochem Soc 137:1402–1407

    Article  CAS  Google Scholar 

  18. Otero FT, Costa SO, Ariza MJ, Marquez M (2005) Electrodeposition of Cu on deeply reduced polypyrrole at very high cathodic potentials. J Mater Chem 15:1662–1667

    Article  CAS  Google Scholar 

  19. Otero TF, Ariza MJ (2003) Revisiting the electrochemical and polymeric behaviour of a polypyrrole free-standing electrode in aqueous solution. J Phys Chem B 107:13954–13961

    Article  CAS  Google Scholar 

  20. Tian Y, Liu M, Zhou X, Huang L, Liu Z, An B (2014) Inhibition of hydrogen evolution reaction on polypyrrole-modified electrode in acid media. J Electrochem Soc 161:E23–E27

    Article  CAS  Google Scholar 

  21. Aydin R, Köleli F (2006) Hydrogen evolution on conducting polymer electrodes in acidic media. Prog Org Coat 56:76–80

    Article  CAS  Google Scholar 

  22. Láng GG, Ujvári M, Inzelt G (2004) Analysis of impedance spectra of Pt/poly(o-phenylenediamine) electrodes—hydrogen adsorption and the brush model of the polymer film. J Electroanal Chem 572:283–297

    Article  Google Scholar 

  23. Láng GG, Ujvári M, Rokob TA, Inzelt G (2006) The brush model of polymer films—analysis of the impedance spectra of Au, Pt|poly(o-phenylenediamine) electrodes. Electrochim Acta 51:1680–1694

    Article  Google Scholar 

  24. Ouyang J, Li Y (1996) Influence of the doped counteranions on the penetration of H+ cations through poly(N-methylpyrrole). J Appl Polym Sci 59:1827–1832

    Article  CAS  Google Scholar 

  25. Gu C, Norris BC, Fan F-RF, Bielawski CW, Bard AJ (2012) Is base-inhibited vapour phase polymerized PEDOT an electrocatalyst for the hydrogen evolution reaction? Exploring substrate effects, including Pt contaminated Au. ACS Catal 2:746–750

    Article  CAS  Google Scholar 

  26. Lasia A (1999) Electrochemical impedance spectroscopy and its application. In: Conway BE, Bockris J, White RE (eds) Modern aspects of electrochemistry. Kluwer Academic/Plenum Publ, New York, pp. 143–298

    Google Scholar 

  27. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy, The electrochemical society ser. Wiley, Hoboken

    Book  Google Scholar 

  28. Rubinson JF, Kayinamura YP (2009) Charge transport in conducting polymers: insights from impedance spectroscopy. Chem Soc Rev 38:3339–3347

    Article  CAS  Google Scholar 

  29. Lvovich VF (2009) A perspective on electrochemical impedance analysis of polyaniline films on electrodes. Electrochem Soc Interface:62–66

  30. Inzelt G, Láng GG (2010) Electrochemical impedance spectroscopy (EIS) for polymer characterization. In: Cosnier S, Karyakin A (eds) Electropolymerization: Concepts, materials and applications, Wiley-VCH Verlag GmbH & Co. Weinheim, Germany. pp. 51–76

  31. Dinh HN, Vanysek P, Birss VI (1999) The effect of film thickness and growth method on polyaniline film properties. J Electrochem Soc 146:3324–3334

    Article  CAS  Google Scholar 

  32. Horvat-Radošević V, Kvastek K, Kraljić Roković M (2006) Impedance spectroscopy of oxidized polyaniline and poly(o-ethoxyaniline) thin film modified Pt electrodes. Electrochim Acta 51:3417–3428

    Article  Google Scholar 

  33. Marmisollé WA, Florit MI, Posadas D (2012) Electrochemically induced ageing of polyaniline. An electrochemical impedance spectroscopy study. J Electroanal Chem 673:65–71

    Article  Google Scholar 

  34. Grzeszczuk M, Poks P (2000) The HER performance of colloidal Pt nanoparticles incorporated in polyaniline. Electrochim Acta 45:4171–4177

    Article  CAS  Google Scholar 

  35. Navarro-Flores E, Omanovic S (2005) Hydrogen evolution on nickel incorporated in three-dimensional conducting polymer layers. J Mol Catal A Chem 242:182–194

    Article  CAS  Google Scholar 

  36. Dalla Corte DA, Torres C, Dos Santos Correa P, Schmidt Rieder E, De Fraga Malfatti C (2012) The hydrogen evolution reaction on nickel-polyaniline composite electrodes. Int J Hydrog Energy 37:3025–3032

    Article  CAS  Google Scholar 

  37. Horvat-Radošević V, Kvastek K (2006) Role of Pt-probe pseudo-reference electrode in impedance measurements of Pt and polyaniline (PANI) modified Pt electrodes. J Electroanal Chem 591:217–222

    Article  Google Scholar 

  38. Jerkiewicz G (2010) Electrochemical hydrogen adsorption and absorption. Part 1: under-potential deposition of hydrogen. Electrocatalysis 1:179–199

    Article  CAS  Google Scholar 

  39. Łosiewicz B, Jurczakowski R, Lasia A (2012) Kinetics of hydrogen deposition at polycrystalline platinum. Electrochim Acta 80:292–301

    Article  Google Scholar 

  40. Horvat-Radošević V, Kvastek K (2008) Quantitative evaluation of experimental artefacts in impedance spectra of conducting polyaniline thin films using pseudo-reference electrode. J Electroanal Chem 613:139–150

    Article  Google Scholar 

  41. Reiner A, Kuhn H, Wokaun H, Scherer GG (2007) Hydrogen adsorption on activated platinum electrodes—an electrochemical impedance spectroscopy study. Z Phys Chem 221:1319–1341

    Article  CAS  Google Scholar 

  42. Yoo HD, Jang JH, Ka BH, Rhee CK, Oh SM (2009) Impedance analysis for hydrogen adsorption pseudocapacitance and electrochemically active surface area of Pt electrode. Langmuir 25:11947–11954

    Article  CAS  Google Scholar 

  43. Lasia A (2002) Applications of the electrochemical impedance spectroscopy to hydrogen adsorption, evolution and absorption into metals. In: Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 35. Kluwer/Plenum, New York, pp. 1–49

    Chapter  Google Scholar 

  44. Harrington DA, Conway BE (1987) AC impedance study of faradaic reactions involving electrosorbed intermediates—I. Kinetic theory. Electrochim Acta 37:1703–1712

    Article  Google Scholar 

  45. Ren X, Pickup PG (1993) Coupling of ion and electron transport during impedance measurements on a conducting polymer with similar ionic and electronic conductivities. J Chem Soc Faraday Trans 89:321–326

    Article  CAS  Google Scholar 

  46. Hu CC, Chu CH (2001) Electrochemical impedance characterization of polyaniline-coated graphite electrodes for electrochemical capacitors—effects of film coverage/thickness and anions. J Electroanal Chem 503:105–116

    Article  CAS  Google Scholar 

  47. Darowicki K, Kawula J (2007) Dynamic electrochemical impedance spectroscopy of the adsorption and relaxation of polyaniline chains during potentiodynamic redox transformations. Russ J Electrochem 43:1055–1063

    Article  CAS  Google Scholar 

  48. Go YY, Pyun SI (2007) A review of anomalous diffusion phenomena at fractal interface for diffusion-controlled and non-diffusion controlled transfer process. J Solid State Electrochem 11:323–334

    Article  CAS  Google Scholar 

  49. Barber J, Morin S, Conway BE (1998) Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces and the relation between opd and upd H. J Electroanal Chem 446:125–138

    Article  CAS  Google Scholar 

  50. Zheng Y, Yan Y, Xu B (2015) Correcting the hydrogen diffusion limitation in rotating disk electrode measurements of hydrogen evolution reaction kinetics. J Electrochem Soc 162:F1470–F1481

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Croatian Science Foundation under the project ESUP-CAP (IP-11-2013-8825) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Višnja Horvat-Radošević.

Additional information

The paper is dedicated to Professor György Inzelt on the occasion of his 70th birthday with high respect to his contribution to science, especially the field of conducting polymers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magdić Košiček, K., Kvastek, K. & Horvat-Radošević, V. Hydrogen evolution on Pt and polyaniline modified Pt electrodes—a comparative electrochemical impedance spectroscopy study. J Solid State Electrochem 20, 3003–3013 (2016). https://doi.org/10.1007/s10008-016-3246-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3246-z

Keywords

Navigation